Книга Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике, страница 63. Автор книги Джон Дербишир

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике»

Cтраница 63

Но при этом все же верно, что математика последних нескольких десятилетий приобрела характерный оттенок, ясно отличающий ее от той математики, которой занимались Гаусс, Дирихле, Риман, Эрмит и Адамар. Насколько его можно передать в одном слове, этот оттенок — алгебраический. Вот начало первого утверждения в книге «Некоммутативная геометрия» Алена Конна, вышедшей в 1990 году и представляющей собой довольно-таки типичный для конца XX века текст по высшей математике:

Классы ограниченных случайных операторов (q/)/єx, рассматриваемых по модулю равенства почти всюду, образуют алгебру фон Неймана W(V,F) относительно следующих алгебраических правил…

Алгебраический… алгебра… И это в книге о геометрии! (Кстати, одиннадцатое слово в формулировке последней теоремы — слово и «риманово». [107])

Происходило же в эти последние десятилетия в общих чертах такое. По ходу большей части своего развития математика твердо опиралась на число. Большая часть математики XIX столетия имела дело с числами: целые числа, рациональные числа, вещественные числа, комплексные числа. В процессе этого развития возникали новые математические объекты, а также раздвигались границы существующих объектов — функций, пространств, матриц — и изобретались новые мощные средства для работы с ними. Но все это так или иначе имело отношение к числам. Функция отображает одно множество чисел в другое множество чисел. Например, функция возведения в квадрат отображает 3, 4 и 5 в 9, 16 и 25; дзета-функция Римана отображает 0, 1 + i и 2 + 2i в −1/2, 0,58216 − 0,92685i и 0,86735 − 0,27513i. Аналогично, пространство — это множество точек, задаваемых своими координатами, которые также суть числа. Матрица — это таблица из чисел. И так далее. (Мы будем рассматривать матрицы в главе 17.iv.)

В математике же XX столетия объекты, введенные ранее для выражения важных фактов о числах, сами сделались объектами исследования, и к ним стали применять развитые к тому времени методы изучения чисел и множеств чисел. Математика как бы сорвалась с якоря, привязывающего ее к числу, и воспарила к новым уровням абстракции.

Классический анализ, скажем, имеет своим предметом предел бесконечной последовательности чисел или точек (причем «точка» определяется своими координатами, каковые суть числа). Типичный же продукт XX века — «функциональный анализ», в котором фундаментальный объект исследования — последовательности функций, которые могут сходиться или расходиться и в которых сами функции предлагается рассматривать как «точки» в пространстве бесконечного числа измерений.

Математика уже обратилась сама на себя до такой степени, что даже сами методы исследования и доказательства превратились в объекты изучения. Ряд самых важных теорем в математике XX века касается полноты математических систем (Курт Гедель, 1931) и разрешимости математических пропозиций (Алонсо Черч, 1936).

Но эти основополагающие изменения пока еще, даже в начале XXI века, не нашли своего отражения в математическом образовании (по крайней мере на уровне знаний, необходимых для поступления в университет). Не исключено, что это вообще невозможно. Математика — предмет, где знания накапливаются. Каждое новое открытие что-то добавляет к общему знанию, но ничто никогда оттуда не изымается. Один раз установленная математическая истина навечно остается истиной, и каждое следующее поколение обучающихся должно ее усвоить. Такая истина никогда (ну, практически никогда) не становится неверной или несущественной — хотя и может выйти из моды или же оказаться частным случаем некоторой более общей теории. (Заметьте при этом, что в математике «более общая» не обязательно означает «более сложная». В проективной геометрии имеется теорема Дезарга, которую легче доказать в трех измерениях, чем в двух. Теорема, которую легче доказать в размерности четыре, чем в размерности три, содержится в главе 7 книги Г.С.М. Кокстера «Правильные политопы». [108])

Молодые и толковые американцы, приступающие к изучению математики в качестве предмета основной специализации на первом курсе в колледже, будут изучать математику, по существу, в том же виде, в каком она была известна молодому Гауссу — возможно, с короткими экскурсами в некоторые области, развитые в более позднее время. Поскольку моя книга нацелена примерно на такой уровень читателей, та математика, о которой здесь рассказывается, в сильной степени пропитана духом XIX века. В повествовательных главах я собираюсь рассмотреть все достижения вплоть до сегодняшнего дня, предлагая для них лучшие объяснения, которые я только смогу придумать, но математические главы этой книги нечасто будут переходить рубеж 1900 года.


VI.

История Гипотезы Римана в XX веке — это история навязчивой идеи, хватку которой рано или поздно почувствовало большинство великих математиков этой эпохи. Примеры одержимости этой идеей имеются в изобилии, как будет видно из нескольких последующих глав. Сначала обратимся к отдельному примеру. Давид Гильберт, как уже рассказывалось, поместил Гипотезу Римана восьмой в списке из 23 проблем, на которых математикам XX столетия предстояло сконцентрировать свои усилия. Это было в 1900 году, до того как навязчивая идея взяла свое. Его умонастроение несколько лет спустя видно из следующей истории, рассказанной его младшим коллегой Джорджем Пойа:

Про германского императора XIII века Фридриха Барбароссу, умершего во время Крестового похода, немцы в массе своей полагали, что он по-прежнему жив, погруженный в сон в пещере глубоко в горах Кифхойзер, готовый к тому, чтобы пробудиться и восстать когда он понадобится Германии. Кто-то спросил Гильберта, что бы он сделал, если бы, подобно Барбароссе, восстал к жизни после сна длиною в несколько столетий. Гильберт ответил: «Я бы спросил, доказал ли кто-нибудь Гипотезу Римана».

А ведь речь идет не о периоде, скудном на мощные проблемы, бросающие вызов ученым. Последняя теорема Ферма (гласящая, что не существует целочисленных [109] решений уравнения xn + yn = zn при n > 2, и доказанная в 1994 году) еще оставалась открытой, как и Проблема четырех красок (о том, что четырех красок достаточно для раскрашивания любой карты на плоскости таким образом, что никакие две соседние области не будут выкрашены одним и тем же цветом, — доказана в 1976 году) и гипотеза Гольдбаха (согласно которой любое четное число, большее двойки, представимо в виде суммы двух простых чисел и которая все еще не доказана), а также множество менее значимых, но давно ждущих своего решения задач, гипотез и головоломок. Гипотеза Римана возвышалась над ними всеми.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация