Более того, затемнение вызывает разнообразные эффекты, проявляющиеся в виде последовательных стадий. На слабых уровнях затемнение может поддерживаться без какого-либо воздействия на окружающую материю. Однако при определенной интенсивности регистрируются существенные изменения материи. К этим изменениям относятся внутреннее напряжение и самопроизвольные электрические разряды. Если эффект затемнения достаточно медленный, то эти изменения могут вызвать разрыв материи, что проявится в виде яркой электрической вспышки
[317].
То есть конкретные стадии подъема и остановки его гравитатора аналогичны квантованной интенсивности эффекта искривления пространства. Полное и почти мгновенное проявление данного эффекта просто вызовет полное уничтожение всей материи, не оставив никаких газовых примесей. Более медленное и слабое проявление этого эффекта вызовет ударную волну с нулевым зарядом и массой, проникающую в ядра атомов, безжалостно разрывая их в процессе агрессивной ядерной реакции, которая не является стандартной цепной реакцией. Причина этого очевидна. Ударная волна, у которой отсутствуют заряд и масса, представляет собой искажение локальной области пространства-времени, поэтому искаженная геометрия просто отрывает друг от друга элементарные частицы атомов, высвобождая огромную энергию, которая соединяет их. Будучи чисто инерциальным проявлением пространственной геометрии без массы и заряда, ударная волна не ослабляется электронами атомов цели. Поэтому ударная волна обладает сходными характеристиками с таким акустическим явлением, как инфразвук — а возможно, даже находится в гармоническом соотношении с ним; ниже мы более подробно остановимся на этой связи.
И последнее. Руководство флота предположило, что даже самая слабая ступень, или гармоника, наблюдаемого эффекта заставит свет обогнуть искривленное пространство, сделав невидимым все, что находится внутри вспучивания. Это был первый шаг в процессе сбора экспериментальных данных, необходимых для управления эффектом в его военном применении.
С. Радиоактивность в открытых системах: фотоэфирный эффект Лебона
1. Взаимодействие элементов и лучей
________________________________________________________________________
Общее свойство этих импульсных технологий и физики взаимосвязанных гармонических систем, проанализированных в «Звезде Смерти Гизы», заключается в том, что в обоих случаях мы имеем дело не с закрытыми, а с открытыми системами, и ярче всего этот принцип проявляется при изучении радиоактивности. В стандартной модели, вошедшей во все учебники физики, радиоактивность представляется динамическим явлением, однако она присуща закрытым системам, обладающим природной нестабильностью и, следовательно, способным к спонтанной эмиссии энергии.
Однако к началу XX столетия бельгийский физик Лебон показал, что радиоактивность представляет собой не собственную характеристику элемента, а состояние его атомной структуры по отношению к внешним источникам энергии. Этот принцип изменил абсолютно все представления о радиоактивности и позволил Лебону выполнить ряд ныне почти забытых экспериментов — забытых потому, что физики упорно интерпретируют их согласно принципу закрытых систем и, следовательно, отрицают их важность, неверно интерпретируя результаты. Суть теории Лебона заключается в гармонической связи между элементом и радиоактивностью.
В гипотезе доктора Лебона фотоядерная реакция включает особое объединяющее действие, естественным образом существующее между элементом и лучом. Каждый элемент реагирует на определенную энергию света. Когда соответствующий луч попадает в окрестности элемента, возникает реакция распада. Лучу вовсе не обязательно проникать точно в центр атома. Простого соседства луча с атомом элемента достаточно для того, чтобы запустить реакцию распада.
Распавшиеся атомы могут служить источником разнообразных частиц, сил и лучей. Эти продукты распада и характер радиоактивного распада определяются самим элементом и конкретным диапазоном резонансных лучей. Реакцию можно вызвать правильным подбором элементов и лучей. Не каждый луч, попадающий в окрестности элемента, способен запустить фотоядерную реакцию. Необходимо соединить определенные элементы с определенными лучами, чтобы реакция началась. Более того, эксперименты показали, что эта бомбардировка была настоящей реакцией, а не простым столкновением.
По мнению Лебона, интенсивность бомбардирующих лучей была не очень важна. При попадании жестких ультрафиолетовых лучей на резонансный элемент наблюдалось испускание таких же лучей. Фотоядерная реакция — это высокопродуктивная электронная реакция… Соответствующие фотоны вызывают образование лавины электронов в определенных материалах. Каждый фотон способен вызвать эмиссию множества других фотонов в результате цепной реакции, которая распространяется в веществе. В этой нарастающей лавине распадается большое количество атомов. И только присутствие примесей предотвращает непрерывный распад определенных элементов
[318].
Основная цель Лебона заключалась в том, чтобы объяснить, почему жесткое ультрафиолетовое излучение Солнца не уничтожает все на своем пути. Он выдвинул два возможных объяснения.
Во-первых, полное уничтожение невозможно из-за того, что солнечный свет не сфокусирован, а рассеян. Во-вторых, каждая частота жесткого ультрафиолетового излучения резонирует только с одним элементом, вызывая в нем лавину электронов, что приводит к распаду атомов.
Как заметил Лебон, даже самый дальний диапазон ультрафиолетового излучения, смертельно опасный «черный свет» гамма-лучей определенных частот, при попадании на определенные элементы приводит к полному их уничтожению, в результате чего высвобождается невероятное количество энергии
[319]. Можно получить чистый поток электрического смещения без других вредных излучений, активно соединяя соответствующие лучи и элементы
[320]. Это соединение резонансной частоты и элемента позволяет получить любой желаемый вид энергии: тепловую, кинетическую, притяжение, отталкивание или распад.
2. Кристаллы в качестве волноводов
________________________________________________________________________
Выдвигая эти теории, Лебон утверждал, что структура элементов находится в резонансе с определенными частотами, особенно в ультрафиолетовой части спектра. Решетчатая структура служит сдвоенным осциллятором для входного излучения, распадаясь в результате кавитации. В книге «Звезда Смерти Гизы» выдвигалось предположение, что ныне отсутствующий компонент Большой галереи, по всей видимости, представлял собой огромную антенную решетку из кристаллических гравитационно-акустических резонаторов, основу которой составляли кристаллы сапфира, или корунда, резонирующего с излучением фиолетовой части видимого спектра.