Книга Путеводитель для влюблённых в математику, страница 20. Автор книги Эдвард Шейнерман

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Путеводитель для влюблённых в математику»

Cтраница 20

Какие простые числа можно найти между 1 и 20?

2, 3, 5, 7, 11, 13, 17, 19.

Промежутки (разности) между этими числами следующие:

1, 2, 2, 4, 2, 4, 2.

Следовательно, среднее расстояние между ними равно:


Путеводитель для влюблённых в математику

Теперь посчитаем, сколько простых чисел между 1 и 1000. Всего их 168: начиная с 2, 3 и 5 и заканчивая 983, 991 и 997. Среднее расстояние между соседними простыми числами в этом случае составит:


Путеводитель для влюблённых в математику

Знаменатель равен 167, так как простых чисел 168, а промежутков между ними на 1 меньше. Числитель можно посчитать довольно просто. Обратите внимание, что число 3 встречается дважды с разными знаками. Та же история с числом 5. Разумеется, это верно для всех чисел, кроме первого и последнего [77]. Таким образом, нам достаточно вычесть 2 из 997. Получается, что среднее расстояние между простыми числами от 1 до 1000 равно


Путеводитель для влюблённых в математику

Это в два с лишним раза больше, чем в случае, когда мы брали числовой ряд от 1 до 20.

Введем обозначение agap(N) для среднего расстояния между простыми числами от 1 до N. Тогда наши предыдущие расчеты могут быть записаны в таком виде:


Путеводитель для влюблённых в математику

Вычислим среднее расстояние между простыми числами от 1 до N, когда N равно 100, 1000, 10 000 и так далее до 1 000 000 000. И округлим результат до тысячных:


Путеводитель для влюблённых в математику

Легко заметить: когда N становится больше в десять раз, agap(N) возрастает примерно на 2,3.

Мы можем проиллюстрировать эту закономерность на графике. Будем отмечать число N по оси абсцисс и agap(N) по оси ординат. Масштаб по оси ординат оставим обычным, а по оси абсцисс разница между делениями пусть постоянно возрастает в 10 раз (это называется логарифмическая шкала):


Путеводитель для влюблённых в математику

Обратите внимание: звездочки выстроились почти в прямую линию. Если присмотреться, левый нижний конец нашей кривой слегка загибается вверх.

Если бы звездочки на графике в точности выстроились в линию, мы получили бы следующую формулу, включающую число Эйлера:

N = ea + 1. (C)

Здесь а=agap(N) Скажем, если N = 1012, то agap(N) ≈ 26,59. Для выполнения (C) необходимо, чтобы a ≈ 26,63, и наш результат близок к этому числу.

Чудесная формула

Три главы были посвящены трем важным числам: π, i, e. Хотите верьте, хотите нет, но все они встречаются в одной формуле (которую вывел Эйлер):

eiπ + 1 = 0.

Формула поражает невероятным изяществом и простотой, однако как можно возводить число в мнимую степень?!

Мы знаем, как возвести e в целую положительную степень. Например, e³ = e × e × e. Отрицательная степень – это произведение дробей: Путеводитель для влюблённых в математику Дробные степени могут быть выражены через квадратные корни, кубические корни и т. д.: Путеводитель для влюблённых в математику Можно посчитать даже такую жутковатую величину, как Путеводитель для влюблённых в математику


Путеводитель для влюблённых в математику

Но e не вписывается в эти стандарты. Нам нужен иной принцип [78].

Мы знаем, что e представляет собой сумму бесконечного ряда:


Путеводитель для влюблённых в математику

Для любого x значение ex будет:


Путеводитель для влюблённых в математику

Скажем, в случае x = –1 мы получим знакомый по казусу со шляпами ряд (B):


Путеводитель для влюблённых в математику

Чтобы узнать, чему равно eiπ, подставим вместо x:


Путеводитель для влюблённых в математику

Чему равны числители дробей в этой сумме?

(iπ) ² = (iπ) × (iπ) = i² × π² = – π².

(iπ) ³ = i × i × i × π³ = –1 × i × π³ = –iπ³.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация