Книга Психология стресса, страница 64. Автор книги Роберт Сапольски

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Психология стресса»

Cтраница 64

Первый слой нейронов (нейроны 1-3) — классические нейроны Хьюбела и Визела. Каждый из этих нейронов «знает» какой-то один факт. Нейрон 1 узнает картины Гогена, нейрон 2 — картины Ван Гога, а нейрон 3 — картины Моне. (Эти гипотетические нейроны более узкоспециализированные, чем любые реальные нейроны в мозге, но эта иллюстрация помогает понять, что такое нейронные сети.) Эти три нейрона создают проекции — отправляют информацию на второй уровень этой сети, где находятся нейроны А—Е. Обратите внимание на паттерн проекции: нейрон 1 общается с А, В и С; нейрон 2 общается с В, С и D; нейрон 3 общается с С, D и Е.

Что «знает» нейрон А? Он получает информацию только от нейрона 1, о картинах Гогена. Это еще один специализированный нейрон. Точно так же Е получает информацию только от нейрона 3 и знает только Моне. А что с нейроном С; что знает он? Он знает об импрессионизме, о том, что общего у этих трех художников. Этот нейрон как бы говорит: «Я не могу сказать, как зовут художника и как называется картина, но точно кто-то из импрессионистов». Он обладает знанием, которое не содержится ни в одном из отдельных фрагментов информации, но возникает благодаря объединению разных фрагментов информации, которая к нему поступает. Нейроны В и D — тоже нейроны импрессионизма, но они не так хорошо разбираются в нем, как нейрон С, потому что у них меньше примеров. Основное количество нейронов в коре мозга обрабатывают воспоминания как нейроны В—D, а не как А или Е.

Мы используем такие связные сети всякий раз, когда пытаемся что-то вспомнить, что-то, что уже почти вспомнилось. Продолжим тему истории искусств и предположим, что вы пытаетесь вспомнить имя художника, этого парня, как же его зовут... Такой коротышка с бородой (активация нейронных сетей, где хранятся «коротышки» и «мужчины с бородой»). Он рисовал парижских танцовщиц; но это не Дега (активируются еще две сети). Он нравился моей школьной учительнице рисования; раз уж я помню ее имя, то наверняка вспомню и его... ой, я вспомнил, как пошел в музей и там была симпатичная девчонка, я попытался заговорить с ней перед одной из его картин... о, в его имени еще есть какая-то подсказка, какой-то город во Франции... И когда активируется достаточно много сетей, вы наконец натыкаетесь на тот факт, который лежит на их пересечении: Тулуз-Лотрек—то, что знает нейрон С.

Это упрощенное описание того, как работает нейронная сеть, и нейробиологи начали думать, что и обучение, и хранение воспоминаний «укрепляют» одни ответвления этой сети, а не другие. Как происходит это укрепление? Чтобы это выяснить, мы перейдем к последнему уровню обобщения и рассмотрим крошечные промежутки между нитевидными ответвлениями двух нейронов. Эти промежутки называются синапсами. Скажем, нейрон услышал какую-то интересную сплетню и хочет передать ее дальше. По нему проходит волна электрических импульсов, и она запускает выработку химических посредников — нейромедиаторов, которые проходят через синапс и «включают» следующий нейрон. Существуют десятки, а может быть, даже сотни разных видов нейромедиаторов, и синапсы в гиппокампе и в коре постоянно используют нейромедиаторы. Вероятно, самый сильный из них — глутамат.

Глутаматергические синапсы не только очень возбудимы, но и обладают двумя свойствами, важными для памяти. Прежде всего эти синапсы нелинейны в своих функциях. Что это значит? В обычном синапсе небольшое количество нейромедиатора выделяется из первого нейрона и «включает» второй нейрон; если этого нейромедиатора хотя бы на каплю больше, возбуждение также вырастет, и т. д. В глутаматергических синапсах вырабатывается глутамат, и ничего не происходит. Его вырабатывается еще больше, и снова ничего не происходит. Но если преодолен определенный порог концентрации глутамата, внезапно второй нейрон приходит в сильное возбуждение и возникает массивная волна активации. Так происходит процесс обучения. Преподаватель что-то бубнит на лекции, его слова влетают в одно ухо и вылетают в другое. Это повторяется снова и снова, информация не усваивается. Наконец, когда это повторяется в сотый раз, загорается лампочка: «Ага!» — и до нас вдруг доходит. На упрощенном уровне, когда до нас наконец доходит, это значит, что мы только что преодолели нелинейный порог глутаматной активации.

Вторая особенность еще более важна. При соответствующих условиях, когда в синапсе возникло достаточное количество супервозбуждающих глутаматных «ага»-реакций, что-то происходит. Синапс становится более возбудимым, и в следующий раз для появления «ага»-реакции нужно меньше возбуждающих сигналов. Этот синапс только что чему-то научился; это «потенцировалось», то есть усилилось. Самое удивительное, что такая гипервозбудимость синапса может сохраняться довольно долго. Но пока что нейробиологам не удается выяснить, как работает этот процесс «долговременной потенциации».

Появляется все больше свидетельств того, что формирование новых воспоминаний иногда может происходить в результате создания новых связей между нейронами (в дополнение к потенциации уже существующих) или, еще более радикально, образования новых нейронов. Эта последняя, спорная гипотеза обсуждается ниже. В настоящий момент это все, что нам нужно знать о том, как наш мозг помнит годовщину свадьбы, спортивную статистику, цвет глаз сестры и то, как танцевать вальс. Теперь мы готовы выяснить, что делает с памятью стресс.

Улучшение памяти во время стресса

Прежде всего нужно отметить, что умеренные кратковременные стрессоры улучшают память. Это имеет смысл, ведь существует оптимальный уровень стресса, который мы называем «возбуждением», — это состояние, когда мы внимательны и сосредоточенны. Этот эффект показан на лабораторных животных и на людях. Одно особенно изящное исследование в этой области провели Ларри Кахилл и Джеймс Макгоу из Калифорнийского университета в Ирвайне. Контрольная группа испытуемых прослушала довольно скучный рассказ: мальчик с мамой идут по городу, проходят мимо разных магазинов, переходят дорогу и заходят в больницу, где работает отец мальчика, им показывают рентгеновский кабинет... и т. д. Участникам экспериментальной группы рассказали похожую историю, но в ней был некоторый эмоционально запряженный материал: мальчик с мамой идут по городу, проходят мимо разных магазинов, переходят дорогу и вдруг... мальчика сбивает машина! Его срочно увозят в больницу и отправляют в рентгеновский кабинет... Через несколько недель участники эксперимента прошли тестирование, и оказалось, что участники экспериментальной группы помнят историю лучше, чем участники контрольной группы, но только самую эмоциональную ее часть. Это подтверждает одну особенность памяти: мы лучше всего запоминаем то, что вызвало у нас эмоции, например сцену преступления, свидетелями которого мы стали. Эмоциональные компоненты улучшают память (хотя воспоминания при этом не всегда будут точными), а нейтральные детали запоминаются хуже.

Это исследование также показало, как эта особенность влияет на память в целом. Когда мы слышим историю о каком-то стрессовом событии, у нас запускается реакция на стресс. Сейчас мы уже знаем, что при этом активируется симпатическая нервная система и в кровь начинают поступать адреналин и норадреналин. Симпатическое возбуждение здесь очень важно: когда Кахилл и Макгоу давали испытуемым препарат, блокирующий симпатическую активацию (бета-блокатор пропранолол, препарат, который часто используют для понижения артериального давления), участники экспериментальной группы запоминали рассказанную им эмоциональную историю не лучше, чем участники контрольной группы. Дело не только в том, что пропранолол нарушает процесс запоминания. Он нарушает процесс запоминания в ситуации стресса (другими словами, участники экспериментальной группы так же хорошо помнили скучные детали истории, как и участники контрольной группы, но хуже помнили ее эмоциональные аспекты).

Вход
Поиск по сайту
Ищем:
Календарь
Навигация