Между тем первые живые организмы могли очень сильно отличаться от современных — причем под “современностью” в данном случае приходится подразумевать не более и не менее как последние три с лишним миллиарда лет. Например, мы знаем, что в современной цепочке передачи генетической информации есть три главных звена: копирование ДНК (репликация), синтез РНК (транскрипция) и синтез белка (трансляция). При этом молекулярные данные свидетельствуют, что у общего предка всех клеточных организмов системы транскрипции и трансляции были намного более простыми, чем у современных клеток, а системы репликации ДНК не было совсем. Еще Карл Вёзе показал, что белки репликации бактерий не имеют ничего общего с белками репликации архей и эукариот
[428]. Скорее всего, это означает, что весь механизм копирования ДНК возник минимум дважды — у бактерий и у архей (эукариоты унаследовали его от последних). Тогда получается, что у общего предка всех их, вместе взятых, генетическая информация хранилась в основном на РНК, как и предполагает популярная в наше время теория “РНК-мира”.
Кроме того, этот общий предок вполне мог еще не достичь так называемого дарвиновского порога — момента, когда интенсивность привычной нам вертикальной передачи генов (от предков к потомкам) начала существенно превышать интенсивность горизонтального переноса генов (между соседними геномами независимо от родства). Понятие “дарвиновский порог” (Darwinian Threshold) ввел тот же Карл Вёзе — он вообще много занимался ранними этапами эволюции. Нам сейчас трудно вообразить, как выглядела жизнь по ту сторону дарвиновского порога, но ясно, что тогдашние организмы были предельно изменчивы: никаких устойчивых видов в тех условиях существовать не могло. Нетрудно догадаться, что устойчивость биологических видов определяется именно надежной передачей генетической информации от предков к потомкам. Когда этот механизм еще не сложился, мир был совершенно другим. Вёзе потому и назвал порог дарвиновским, что его переход означал происхождение видов в самом что ни на есть буквальном смысле слова “вид” (а “Происхождением видов”, как известно, называется главная книга Дарвина). Живые системы, не достигшие дарвиновского порога, просто не могли распадаться на биологические виды таким же образом, как распадается на них жизнь сейчас.
Самые древние более-менее достоверно определимые остатки живых клеток имеют возраст 3,4 миллиарда лет
[429]. Это уже типичные прокариоты, скорее всего входящие в дожившую до современности группу сульфатредуцирующих бактерий. На этой отметке заканчивается туманная повесть о происхождении жизни и начинается ее собственная история.
Обоюдоострый меч О2
Переходя ко второму порогу — кислородной революции, надо прежде всего сказать, что биологические свойства молекулярного кислорода (O2) как минимум двуедины. Кислород — мощный окислитель, с помощью которого можно получить много полезной энергии, и в то же время сильный яд, свободно проходящий сквозь клеточные мембраны и разрушающий структуру клеток. Иногда говорят, что кислород — это обоюдоострый меч
[430]. Древнейшим жителям Земли существа, дышащие кислородом, скорее всего, показались бы кем-то вроде людей с фторной планеты из повести “Сердце Змеи” (см. главу 2). У всех организмов, имеющих дело с кислородом, обязательно есть специальные ферментные системы, гасящие его агрессивное химическое воздействие. А те, у кого таких ферментных систем нет, обречены быть строгими анаэробами, выживающими только в бескислородной среде. На современной Земле это некоторые бактерии и археи.
Практически весь молекулярный кислород на Земле имеет биогенное происхождение, то есть выделяется живыми существами. Главный источник O2 — это кислородный фотосинтез. Других процессов, способных давать его в сравнимых количествах, просто нет. Как мы уже знаем, фотосинтезом называется синтез глюкозы (С6H12O6) из углекислоты (CO2) и воды (H2O), происходящий с помощью энергии света. Главным “действующим лицом” тут служит углекислый газ, который восстанавливается водой. Кислород же в этой реакции — не что иное, как побочный продукт, отход. Фотосинтез может вообще не приводить к выделению кислорода, если вместо воды в нем используется в качестве восстановителя какое-нибудь другое вещество — например, сероводород, свободный водород или соединения железа. Такой фотосинтез называется бескислородным, и есть несколько его разных вариантов.
Бескислородный фотосинтез наверняка появился раньше кислородного. Поэтому в первый миллиард лет существования жизни (а скорее всего, дольше) фотосинтез хотя и шел, но никакого насыщения атмосферы Земли кислородом не вызывал. Содержание кислорода в атмосфере в те времена составляло не больше 0,001% от современного — попросту говоря, это значит, что его там не было.
Все изменилось, когда на сцену вышли синезеленые водоросли, или цианобактерии. Впоследствии именно эти существа стали предками хлоропластов, фотосинтезирующих элементов клеток эукариот. Цианобактерии — очень древняя эволюционная ветвь. По меркам земной истории, они удивительно неизменны. Например, широко распространенная в современных водоемах синезеленая водоросль осциллятория имеет ископаемых родственников, живших 800 миллионов лет назад, причем от современных осцилляторий они практически неотличимы
[431]. Таким образом, осциллятория — чрезвычайно впечатляющий пример живого ископаемого. Но самые первые цианобактерии появились намного раньше нее, это надежно подтверждено палеонтологическими данными.
Поначалу цианобактерии не были многочисленны, потому что освоенный ими кислородный фотосинтез не давал никаких серьезных преимуществ по сравнению с бескислородным, которым владели другие группы микробов. Но химическое окружение этих микробов постепенно менялось. Наступил момент, когда “сырья” для бескислородного фотосинтеза просто перестало хватать. И вот тогда час цианобактерий пробил. Кислородный фотосинтез имеет одно большое преимущество и один большой недостаток. Преимущество — это совершенно неограниченный запас исходного реагента-восстановителя (воды), а недостаток — высокая токсичность побочного продукта (кислорода). Неудивительно, что поначалу этот тип обмена не был “популярен”. Зато при малейшем дефиците других субстратов, кроме воды, обладатели кислородного фотосинтеза должны были сразу получить конкурентное преимущество, что, по всей видимости, и произошло. После этого наступила эпоха длиной примерно в миллиард лет, на протяжении которой облик Земли определяли в первую очередь цианобактерии. Недавно эту эпоху даже предложили неофициально назвать в их честь “цианозоем”
[432].