Книга Прощай, нищета! Краткая экономическая история мира, страница 110. Автор книги Грегори Кларк

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Прощай, нищета! Краткая экономическая история мира»

Cтраница 110

С другой стороны, изучение счастья позволяет провести интересную параллель между налоговой политикой нашего времени и мальтузианской эры. Мы видели в главе 2, что налоги, направлявшиеся на финансирование расточительного образа жизни правителей, в мальтузианскую эру в реальности не влекли за собой социальных издержек. Роскошь Версаля была создана отнюдь не за счет страданий бедняков, какой бы образ Марии-Антуанетты ни сложился в глазах общества. Исследования счастья говорят о том, что то же самое верно и для современной эпохи. Если мы высоко ценим такие коллективные блага, как научные исследования, космические полеты, общедоступное искусство и красивая архитектура, то должны финансировать их за счет налогов, как бы ни было это затратно с точки зрения экономики. Соответствующее сокращение нашего материального потребления не потребует от нас существенных издержек.

Таким образом, история мировой экономики полна явлений, сюрпризов и загадок, противоречащих нашим ожиданиям. Она неотделима от вопроса, кто мы и как сформировалась наша культура. Никто не может претендовать на истинную живость разума, не разобравшись в этих тайнах и хотя бы немного не поломав над ними голову в попытках понять, почему мы стали обладателями нынешних богатств лишь после тысячелетий жизни в дикости и почему многим обществам так трудно последовать за нами в материальную землю обетованную.


Техническое приложение

В данном приложении с помощью простых алгебраических операций выводятся все формулы, используемые в книге.

1. ФУНДАМЕНТАЛЬНОЕ УРАВНЕНИЕ РОСТА

Если у — выпуск продукции на душу населения, k — капитал на душу населения, z — земля на душу населения, а А — уровень эффективности, то для любой экономики

gy = agk + cgz + ga, (1)

где gx обозначает темп роста переменной, а — доля продукции, выплачиваемая собственникам капитала, и с — доля, выплачиваемая собственникам земли. Чтобы убедиться в этом, выразим общее соотношение между выработкой и другими переменными в виде

y = AF(k,z). (2)

Здесь А служит мерой того, насколько эффективно экономика преобразует факторы производства в продукцию. Точная природа функции F(k,z) не определена, и в этом нет необходимости.

Небольшое изменение эффективности ДА приводит к изменению выработки на величину AF(k,z). Так, повышение эффективности на 1 % приводит к возрастанию выпуска продукции на 1 %. Небольшое изменение величины капитала на душу населения Δr влечет за собой изменение выработки на rΔk, где r — арендная плата за единицу капитала. Так происходит из-за того, что в конкурентной экономике сумма выплат собственникам каждого фактора производства равна возрастанию выпуска при использовании дополнительной единицы факторов производства. Аналогично изменение Δz приводит к изменению выпуска на sΔz, где s — рента за единицу земли. Суммируя эти величины, мы можем выразить небольшое изменение выпуска продукции на душу населения в виде

Δy = rΔk + sΔz + ΔAF(k,z). (3)

Деление обеих частей уравнения (3) на у и перестановка дают нам

Δy/y = rk/y Δk/y + sz/y Δs/s + ΔAF(k,z)/AF(k,z). (4)

и из уравнения (4) следует уравнение (1).

2. ТЕМПЫ РОСТА ЭФФЕКТИВНОСТИ

Из уравнения (1) следует, что мы можем выразить темп поста эффективности как

ga = gy — agk — cgz.

Точно таким же образом можно выразить рост эффективности как средневзвешенный темп роста выплат собственникам труда, капитала и земли. То есть

gy = agk + bgw + cgs, (5)

Для того чтобы вывести это соотношение, отметим, что стоимость продукции равна сумме выплат владельцам труда, капитала и земли. Поэтому

y = w + rk + sz. (6)

Из уравнения (6) следует, что для небольших изменений опять же

Δy = Δw + Δrk + rΔk + Δsz + sΔz ⇒ Δy — rΔk — sΔz = Δw + Δrk + Δsz.

3. ФУНДАМЕНТАЛЬНОЕ УРАВНЕНИЕ В МАЛЬТУЗИАНСКОЙ ЭКОНОМИКЕ

Для периода до 1800 года уравнение (1) приобретает особый вид, в котором в долгосрочном периоде gy = gk = 0. Кроме того, gz = — gN, где N — уровень численности населения. Так, если численность населения возрастает на 1 % в год, то количество земли на душу населения сокращается в этом же темпе. Подстановка этих значений в уравнение (1) дает в долгосрочном периоде

gА = сgN .

Поскольку доход на душу населения в мальтузианской экономике в долгосрочном периоде не изменяется и поскольку в первом приближении заработная плата и прибыль от капитала должны быть постоянными, то из уравнения (5) следует, что

gА = сgs .

Поэтому темп роста реальной земельной ренты в мальтузианском мире при неизменных реальных процентных ставках должен быть равен темпу роста населения.

4. ИСТОЧНИКИ РОСТА ЭФФЕКТИВНОСТИ

Если в экономике существует j секторов, то общий темп роста эффективности экономики может быть разложен на вклады, вносимые каждым сектором, в виде

gА = ∑ θjgAj ,

где θj — стоимость выпуска в секторе j по отношению к стоимости всей готовой продукции экономики.

5. СОВРЕМЕННЫЙ ЭКОНОМИЧЕСКИЙ РОСТ

В современную эпоху доля земельной ренты в национальном доходе индустриализованных экономик резко сократилась, как правило, составляя менее 4 % (см. рис. 10.3). Из этого следует, что для современной эпохи мы можем еще больше упростить фундаментальное уравнение роста:

gy agk + ga.

Более того, рост эффективности стимулирует еще большие инвестиции в основной капитал. Объем этого стимулированного накопления капитала можно оценить, исходя из того факта, что

a = rk/y.

Поскольку в современную эпоху a — величина относительно постоянная и составляет около 0,25, а реальная процентная ставка r также относительно постоянна, то, соответственно

gk gy.

Таким образом,

gk ga/ (1-a).

Вход
Поиск по сайту
Ищем:
Календарь
Навигация