Данный вопрос, если сформулировать его более понятным для читателей образом, мог бы звучать так: сколькими разными способами два полных близнеца, Питер и Поль, могут сидеть на двух стульях? Привычный для нас подсчет показывает, что таких способов существует два: Питер может сидеть справа, а Поль – слева, или наоборот. Но допустим, что Питера совершенно невозможно отличить от Поля, и если вы на мгновение повернетесь к ним спиной, а затем вновь посмотрите на них, то уже не сможете сказать наверняка, поменялись ли они местами. Таким образом, если они неразличимы между собой, то в действительности существует лишь одна конфигурация: по одному из близнецов на каждом стуле. Когда объекты неразличимы между собой, утверждал Бозе, подсчет нужно вести по-другому. Спустя многие годы Бозе признал, что на самом деле сам он не заметил никакой новизны в своем подходе. Его интуитивный «выстрел в темноте» показался ему вполне естественным.
Эйнштейн расширил рамки работы Бозе, рассмотрев групповое поведение любой совокупности квантовых частиц, которые подчиняются этой необычной статистике. В то время как Бозе сосредоточил свое внимание на чистом излучении (которое, подобно всем формам света, состоит из фотонов, которые ведут себя так, словно они не обладают массой), Эйнштейн обобщил эту теорию на материю в целом (состоящую из частиц, обладающих массой, например атомов). Его математические выкладки предсказали нечто потрясающее: если такие бозоны (как их теперь называют) заморозить до достаточно низкой температуры, они могут проявлять своего рода взаимную квантовую симпатию: все они будут действовать как один – в буквальном смысле. В этом случае частицы утратят свою идентичность и превратятся в нечто неописуемое: ни твердое тело, ни жидкость – одним словом, какой-то новый вид материи.
Ход рассуждений Эйнштейна носит слишком узкоспециальный характер, чтобы я мог описать его здесь на языке, понятном широкому кругу читателей, – даже в метафорическом виде. Но его выводы станут более понятны, если мы применим принцип неопределенности, открытый Гейзенбергом три года спустя, в 1927 г. Приведенное ниже упрощенное доказательство, даже если оно покажется вам анахроничным, соответствует тому, как большинство физиков в наши дни понимает явление, предсказанное Эйнштейном.
Запомните: мы хотим показать, что при достаточно низких температурах огромное количество бозонов может превратиться («сплавиться») в некий единый объект. Пытаясь представить себе бозон, не воображайте его как некую точку; вместо этого нарисуйте силой своего воображения некое размытое, размазанное облако вероятности, которая говорит вам о том, где вероятнее всего находится бозон.
Вы, наверное, помните персонажа по имени Пигпен из старого комикса Peanuts. Вы редко видите Пигпена; все, что вы видите, это облако пыли, окружающее его; вы только знаете, что он находится где-то там, внутри облака. Аналогично, бозон окутан сферическим облачком, которое представляет собой совокупность концентрических оболочек вероятности, темный центр которого является наиболее вероятным местонахождением самой частицы. Этот центр является областью самой высокой вероятности – местом, где «находится» бозон, согласно привычному для нас доквантовому образу мышления – хотя всегда существует какая-то вероятность того, что он находится на самом краю такого облака.
Теперь представьте себе совокупность таких облачков, которые хаотически мечутся в трехмерном простанстве. Эта совокупность представляет собой газ бозонов. Вопрос: что произойдет с этим газом, если мы охладим его до температур, близких к абсолютному нулю? Согласно принципу неопределенности Гейзенберга, должно произойти нечто очень странное: эти размытые облачка станут еще более размытыми. Эти облачка вероятности станут шире и тоньше, а это означает, что перемещения бозонов станут большими. Чтобы понять, почему это произойдет, вспомните качели. Охлаждение бозонов замедлит их движения до такой степени, что они окажутся практически неподвижны, а это приведет к тому, что скорости их движения снизятся до какой-то определенной величины (их скорость не может оказаться ниже нуля). Но поскольку параметр «скорость» снижается, параметр «местоположение» растет: по мере того как скорости бозонов становятся все более определенными, их позиции становятся все менее определенными. Иными словами, они становятся еще более размытыми. Их облачка вероятности становятся шире.
При достижении некой критической температуры эти облачка вероятности расширяются настолько, что начинают взаимно перекрываться, а бозоны начинают сливаться друг с другом. Как только это произойдет, говорил Эйнштейн, большая их часть должна самопроизвольно перейти в одно и то же квантовое состояние – состояние наименьшей возможной энергии. Даже сам Эйнштейн не был уверен, какой вывод следует из такого предсказания. «Это замечательная теория, – писал он своему приятелю Полю Эренфесту в декабре 1924 г., – но что же она означает?»
[132]
Спустя семьдесят один год после формулирования Эйнштейном этой математической концепции ее удалось воплотить – в 1995 г., в одной из лабораторий Баулдера, Колорадо. С помощью магнитных полей, охлажения испарением и лазеров, подобных тем, которые используются в устройствах считывания и записи компакт-дисков, Эрик Корнелл и Карл Виман охладили разреженный газ атомов рубидия до менее чем миллионной доли градуса
[133] выше абсолютного нуля – температуры, которая вызывает благоговейный ужас даже у специалистов по низким температурам. В этих экстремальных условиях – которые, вполне возможно, ранее не достигались нигде во Вселенной – они наблюдали, как тысячи атомов ведут себя как один. В 2001 г. Корнелл, Виман и Вольфганг Кеттерле из МТИ стали лауреатами Нобелевской премии по физике за создание ими этого экзотического состояния материи, известного в настоящее время как бозе-эйнштейновская конденсация
[134]. Как было написано в пресс-релизе Королевской Академии наук Швеции, этим ученым удалось заставить атомы «петь в унисон»
[135].