Пресса сейчас вовсю обсуждает тему бозона Хиггса, на открытие которой нацелен новый сверхмощный ускоритель, построенный под Женевой. Мощности RHIC’a на это не хватает, однако неоткрытый еще бозон Хиггса уже нашел практическое применение у нас на Лонг-Айленде. Читатель будет удивлен, узнав, что применяет бозон Хиггса (вернее, его идею, но ведь, как мы здесь обсуждали, мир микроскопических частиц ближе к миру идей, чем вещей) коммерческая компания ЛАЙПА, поставляющая в наши дома электроэнергию. Недавно эта компания уложила первый в истории сверхпроводящий кабель, сделанный из высокотемпературных сверхпроводников (я говорил о них в восьмой главе). Сверхпроводимость есть состояние вещества, характеризуемое двумя замечательными, неотделимыми друг от друга свойствами: (а) ток течет через сверхпроводник абсолютно без потерь и (б) магнитное поле не проникает в глубь сверхпроводника. Компанию ЛАЙПА интересует первое свойство, а тех, кто делает сверхбыстрые поезда на магнитной подушке или ищет бозон Хиггса, — второе.
Оказалось (и это еще один пример тех замечательных аналогий между внешне несхожими явлениями природы, которые видны лишь математику), что теория сверхпроводимости и теория слабых ядерных взаимодействий (термин «слабый» является и названием и характеристикой их силы) имеют между собой много общего. Неудивительно поэтому, что механизм возникновения бозона Хиггса был открыт учеными, работавшими в разных областях физики, — Питером Хиггсом (физика частиц) и Филипом Андерсоном (физика конденсированного состояния). Фил так и пишет о себе: «открыл бозон Хиггса». Имея в виду эту аналогию, я буду называть оба необычных состояния Э-СП (электрическая сверхпроводимость) и СЯ-СП (слабая ядерная сверхпроводимость). Первой общей чертой Э- и СЯ-СП является то, что обе они возникают в результате фазового перехода. То есть для того, чтобы металл стал сверхпроводником, надо его охладить, причем, как правило, охладить довольно сильно, до температуры всего лишь на пару десятков градусов выше абсолютного нуля, что является дорогим удовольствием. Начиная с некоторой температуры, электрическое сопротивление материала резко падает до нуля; это и есть фазовый переход в новое, сверхпроводящее, состояние. ЛАЙПА решилась на коммерческое использование сверхпроводимости только после того, как появились материалы с относительно высокой температурой сверхпроводящего перехода, для достижения которой достаточно охладить кабель не дорогим жидким гелием, а дешевым жидким азотом. Подобным же образом СЯ-СП появилась только тогда, когда вещество Вселенной в ходе ее расширения остыло ниже некоторого порога. Все это, разумеется, произошло задолго до появления не только жизни, но даже и атомных ядер. Все мы, не подозревая об этом, живем внутри огромного сверхпроводника.
Разница между Вселенной и лонг-айлендским кабелем состоит в том, что кабель является идеальным проводником электрического тока, а Вселенная — электрослабого тока, переносимого слабыми ядерными взаимодействиями. Но подобно тому, как сверхпроводник выталкивает из себя магнитное поле, вакуум нашей Вселенной выталкивает из себя поле слабых ядерных сил. Отсутствию проникновения магнитного поля можно дать эквивалентную формулировку, а именно: фотон, частица, переносящая электромагнитное взаимодействие и летящая в вакууме со скоростью света (она и есть свет), в сверхпроводнике приобретает массу. Подобным же образом частицы — переносчики слабых ядерных взаимодействий (W и Z-бозоны) приобретают массу в СЯ-СП-состоянии. В итоге эти взаимодействия становятся короткодействующими. Чтобы двум разделенным друг от друга в пространстве источникам слабых ядерных сил провзаимодействовать, им нужно переброситься массивным W- или Z-бозоном, а энергию для этого занять из вакуума. По соотношению неопределенности занять энергию Е = тс2, т — масса бозона, можно лишь на время t ~ h/тс2 (h — постоянная Планка), что означает, что бозон с массой т не пролетит дальше, чем на расстояние L ~ h/тс, что для слабых сил составляет 10-17 — 10-16 метра. Скажем для сравнения: глубина проникновения магнитного поля в сверхпроводник может составлять 10-6 метра. В то время как для обычных сверхпроводников у нас есть многочисленные эксперименты, для слабых ядерных сил описанный сценарий все еще является только теорией. Чтобы теория не была просто байкой, созданной для объяснения задним числом уже имеющихся фактов, она должна предсказать какое-то явление, которое впоследствии было бы обнаружено. Вот бозон Хиггса и является таким побочным продуктом перехода Вселенной в «сверхпроводящее» состояние. Именно поэтому его так активно ищут.
Слабые ядерные взаимодействия, хоть и слабы, играют немалую роль в общей экономии Вселенной. Например, ими движим жизненно важный для атомных и термоядерных реакций процесс распада нейтрона. Время жизни нейтрона вне ядра равно семнадцати минутам, а распадается он на протон, электрон и электронное антинейтрино. Последняя частица (как и все другие виды нейтрино) не имеет электрического заряда и взаимодействует с окружающим миром только посредством слабых сил и гравитации, то есть очень слабо. Поэтому обнаружить нейтрино было тяжело, и нашли его только потому, что хорошенько поискали. А между тем, не знай мы про нейтрино, не построить бы нам теорию электрослабых взаимодействий и не получить бы за нее Стивену Вайн-бергу и Абдусу Саламу Нобелевскую премию. И еще много чего другого интересного мы бы не знали.
История открытия нейтрино поучительна. Нейтрон — тяжелая частица, незаряженный побратим протона, образующий вместе с последним атомные ядра, был открыт Джеймсом Чедвиком в начале 1930-х годов. Как я уже сказал, вне ядра нейтрон нестабилен и распадается. Те продукты распада, которые обнаружили сразу, являются заряженными частицами — протоном и электроном. Нейтрон нейтрален, электрон заряжен отрицательно, протон — положительно, в сумме их заряд равен нулю, все как положено. Зачем что-то еще? И если бы экспериментаторы не вели количественно точных измерений, никаких подозрений про «что-то еще» у них бы не появилось. «Не вводите сущности без достаточных оснований», — гласит философский принцип, называемый «бритвой Оккама». Основания для введения новой сущности возникли, когда стало понятно, что сумма импульсов протона и электрона не равна импульсу нейтрона. Недостающий импульс кто-то уносил с собой. Этот кто-то не имел электрического заряда и очень слабо взаимодействовал с остальным миром. Энрико Ферми дал ему имя «нейтрино», то есть «нейтрончик».
Лаборатория наша находится в центре острова, с юга омываемого Атлантическим океаном. С северной стороны находится большой спокойный залив, отделяющий Лонг-Айленд от штата Коннектикут. Залив этот всего лишь в трех минутах езды от моего дома, и я часто брожу по его берегам.
Приедается все,
Лишь тебе не дано примелькаться.
Дни проходят,
И годы проходят
И тысячи, тысячи лет.
В белой рьяности волн,
Прячась
В белую пряность акаций,
Может, ты-то их,
Море,
И сводишь, и сводишь на нет.
(Б. Пастернак)
Вокруг много живности, главным образом птиц, но также кроликов, енотов, черепах. Природа и пейзаж напоминают мне места на Волге под Самарой, где я вырос. На самой кромке воды чуть ли не самым частым гостем является очень древний обитатель нашей планеты — подковообразный краб. Это жутковатое на вид, хотя и совершенно безобидное существо, достигающее довольно больших размеров (до сорока сантиметров в диаметре). По справкам, этому виду двести пятьдесят, а может, и триста миллионов лет, то есть он на десятки миллионов лет старше самых древних динозавров. Краб этот пережил две страшные планетарные катастрофы: чудовищную засуху пермского периода, когда, по оценкам, погибло восемьдесят процентов живых существ, населяющих землю, и катастрофу конца мелового периода (семьдесят миллионов лет назад), приведшую, в частности, к исчезновению динозавров.