Эта величина имеет практическую ценность. Однажды мне пришлось оценивать коммерческое предложение по новому методу опреснения морской воды. Первым делом я проверил, не противоречат ли излишне смелые заявления разработчиков второму закону (началу) термодинамики. Оказалось, что противоречат, поэтому я порекомендовал инвестору воздержаться от капиталовложений в проект. Изобретатель нового метода нарушил второй закон.
Расчеты энтропии могут сказать не только о том, какие заявления изобретателей окажутся фальшивкой. Они способны помочь определить достижимые цели. Если мы говорим, что стоимость электроэнергии составляет 10 центов за 1 кВт/ч, значит расходы на опреснение 1 м³ морской воды тоже составят 10 центов. Это соответствует затратам $100 на объем 1 акр-фут
[103] (примерно столько воды расходует за год семья из пяти человек). В настоящее время вода с опреснительных заводов даже близко не так дешева. Компании предлагают пресную воду по $2000 за такой объем. Обычная цена артезианской воды в Калифорнии составляет от $6 до $40 за 1 акр-фут, что делает ее опреснение невыгодным. Однако во время засухи 2015 года некоторые фермеры покупали ее и по $2000. Подобная цена делала опреснение воды конкурентоспособным. (Разумеется, инвестиции в опреснительные установки по-прежнему рискованные, поскольку цена воды после окончания засухи падает.)
Один из путей снижения затрат на опреснение морской воды – использование энергии, которая обходится дешевле электрической. Например, для создания необходимого тепла могут использоваться солнечные батареи. Такие установки уже существуют на Ближнем Востоке. Парадоксально, но тот же солнечный свет может использоваться и для охлаждения. Угадайте, кто имеет соответствующий патент? Вот поразительный ответ: официальный патент США за № 1781541 на холодильник, работающий на солнечной энергии, принадлежит Альберту Эйнштейну и физику Лео Сциларду (который запатентовал атомную бомбу). Вы можете прочесть об этом в интернете. Это малоизвестный и удивительный факт, с помощью которого удастся выиграть пари.
Расчеты изменений энтропии важны для устранения углекислого газа из атмосферы, чтобы справиться с глобальным потеплением. Если выбрасывать углекислый газ в воздух, четверть его даже через 1000 лет останется там. В принципе, его можно было удалить, но он растворяется в гигантском объеме атмосферы; значит, и энтропия смешения тоже гигантская. Чтобы убрать углекислый газ из атмосферы, необходимо создать энтропию еще где-то (обычно она создается в форме тепла), однако на это нужны огромные расходы энергии. Значительно дешевле оказывается улавливать углекислый газ до того, как он смешивается с атмосферой. Или просто оставлять углерод в его природном виде в земле.
Однако на этом остановимся с описанием практической пользы от расчетов энтропии. С поведением времени энтропию связывает как раз абстрактное и мистическое ее понимание.
Глава 10
Эта таинственная энтропия
Более глубокое значение энтропии – одно из замечательнейших достижений в истории физики…
Настоящее великолепие науки в следующем: мы можем найти способ мыслить так, чтобы делать законы очевидными.
Ричард Фейнман
Самые замечательные стороны энтропии оставались глубоко сокрытыми за фасадом ее использования в технике. Простые понятия теплового потока и температуры уходили корнями в дебри квантового мира. Они медленно приоткрывались ученым по мере того, как в XIX веке создавалась и развивалась новая физическая дисциплина – статистическая физика, базировавшаяся на не подтвержденной тогда идее существования атомов и молекул. Загадки и парадоксы статистической физики привели ученых к открытию физики квантовой, а Эддингтона – к мысли о том, что время течет благодаря увеличению энтропии.
Физика бесконечных множеств
Физика может очень хорошо предсказывать поведение одного или двух атомов. Она может уверенно делать это также в отношении одной или двух планет. Труднее, когда взаимодействуют несколько объектов. Оказывается, очень сложно предсказать, будет ли стабильной система из трех планет. Уравнения нам известны, но математика не могла «решить» их, то есть записать решение в общепринятых научных функциях вроде экспоненты и косинусов, чтобы получить соответствующие значения – решить задачу аналитически, а не численно. Мы можем симулировать движение десятка планет на компьютере, что обычно и делается. К счастью, поведение трехзвездной системы хаотично, и точные данные об изначальном положении звезд и их скорости нужны только для того, чтобы сделать приблизительные оценки на будущее. Как итог – в астрономии часто неясно, стабильна та или иная звездная система или в какой-то момент одна из звезд улетит в бесконечность.
Примечательно, что по мере увеличения наблюдаемых объектов физике становится легче. Это потому, что по многим параметрам мы в действительности хотим знать средние значения, а, например, для большого множества частиц (в галлоне – 3,8 л – воздуха содержится 1023 молекул) средние значения могут быть весьма точными. Мы можем даже вычислить среднее отклонение от средних величин.
До того как появилась статистическая физика, простые законы поведения газов открывались эмпирически. В далеком 1676 году ирландский химик и теолог Роберт Бойль рядом экспериментов показал, что давление в определенном объеме газа обратно пропорционально его объему. Сожмите газ до половины изначального объема, и его давление увеличится вдвое (если поддерживается постоянная температура). В XIX веке статистическая физика объясняла это явление, постулируя наличие в газе огромного количества атомов и идею о том, что давление, по существу, было средним значением огромного числа столкновений атомов со стенками сосуда.
Объяснение поведения газов наличием в них атомов было одним из великих ранних актов универсализации физики. До возникновения теории атомов поведение газов не связывалось с законами Ньютона (например, с равенством F = ma). Существовало представление, что тепло – это отдельная жидкость, которая называется теплород
[104] и якобы перемешана с газом. Но статистическая физика показала, что тепло – это энергия отдельных атомов. Быстро двигающиеся атомы – «горячие», медленные – «холодные», а температура (по абсолютной шкале) считается средней кинетической энергией каждого атома.
И здесь снова оказалась неоценимой роль Эйнштейна. В 1905 году, том самом, когда он сформулировал уравнение E = mc², ученый искал возможности доказательства атомной теории, рассчитывая эффект, который атомы могут оказывать на мельчайшие пылинки. Начав свою работу, он узнал, что этот эффект мог быть тем самым броуновским движением, которое открыл ботаник Роберт Броун в 1827 году. Рассматривая пыльцу растений в сильный микроскоп, Броун увидел, как множество мельчайших частичек совершало лихорадочные движения по всем направлениям, как будто плывя в разные стороны. Тогда признанным объяснением этого явления считалось то, что эти частицы – зародыши жизни, изначальные живые организмы типа инфузорий, первичная форма.