Почти через 20 лет после того, как поле Янга — Миллса было предложено авторами, Хоофт наконец доказал, что оно является корректной и однозначной теорией взаимодействия частиц. Известие о работе 'т Хоофта распространилось молниеносно. Нобелевский лауреат Шелдон Глэшоу вспоминает, что он, услышав эту новость, воскликнул: «Либо этот парень полный кретин, либо величайший гений, появившийся в физике впервые за много лет!»
{45} Дальнейшее развитие событий было стремительным. Быстро выяснилось, что верна более ранняя теория слабого взаимодействия, предложенная в 1967 г. Стивеном Вайнбергом и Абдусом Саламом. К середине 1970-х гг. поле Янга — Миллса было применено к сильному взаимодействию. Тогда же, в 1970-х гг., к физикам пришло ошеломляющее понимание, что поле Янга — Миллса может оказаться ключом к тайнам всей ядерной материи.
Таким оказался недостающий элемент головоломки. Секрет «дерева», связующий воедино материю, — не геометрия Эйнштейна, а поле Янга — Миллса. По-видимому, именно оно, а не геометрия, представляло собой главный урок физики.
Стандартная модель
Сегодня поле Янга — Миллса открыло возможность всеобъемлющей теории материи. Мы настолько уверены в этой теории, что ласково называем её Стандартной моделью.
Стандартная модель способна объяснить все экспериментальные данные, касающиеся субатомных частиц с энергией вплоть до 1 ТэВ (энергией, возникающей при ускорении электрона в поле, созданном разностью потенциалов в триллион вольт). Это почти предел для ускорителей, существующих в настоящее время.
[10] Следовательно, можно без преувеличения сказать, что Стандартная модель — самая удачная теория в истории науки.
Согласно Стандартной модели каждое взаимодействие, связывающее различные частицы, создаётся при обмене различными видами квантов. Сейчас мы рассмотрим силы по отдельности, а затем объединим их в Стандартную модель.
Сильное взаимодействие
Стандартная модель гласит, что протоны, нейтроны и другие тяжёлые частицы вовсе не являются элементарными, а состоят из других, ещё более малых частиц — кварков. В свою очередь, кварки различают по трём «цветам» и шести «ароматам» (эти термины не имеют никакого отношения к цветам и ароматам в привычном понимании этих слов). Существуют также аналоги кварков, характерные для антиматерии, — антикварки. (Антиматерия идентична материи во всех отношениях, но имеет противоположные заряды и аннигилирует при соприкосновении с обычной материей.) Таким образом, получаем 3 × 6 × 2 = 36 кварков.
В свою очередь, кварки удерживаются вместе благодаря обмену небольшими порциями энергии — глюонами. Математически эти глюоны описываются полем Янга — Миллса, которое «сгущается» в липкую субстанцию, которая прочно связывает кварки между собой. Глюонное поле обладает такой силой и связывает кварки так прочно, что их невозможно оторвать друг от друга. Это явление называется кварковым конфайнментом, им можно объяснить причину, по которой свободные кварки так и не удалось получить экспериментальным путём.
Например, протон и нейтрон можно сравнить с тремя стальными шарами (кварки) в метательном снаряде для ловли скота бола, им не даёт разлететься Y-образная бечёвка (глюон). Другие частицы, между которыми существует сильное взаимодействие, например π-мезон, можно сравнить с кварком и антикварком, которые удерживаются вместе одной бечёвкой (рис. 5.3).
Ясно, что при воздействии на эту конструкцию из стальных шаров мы можем заставить её колебаться. В мире квантов допустим лишь дискретный набор колебаний. Каждая вибрация группы стальных шаров или кварков соответствует определённому типу субатомных частиц. Таким образом, эта простая (но имеющая огромное значение) схема объясняет, что существует бесконечное множество частиц, связанных сильным взаимодействием. Часть Стандартной модели, описывающая сильное взаимодействие, называется квантовой хромодинамикой (КХД) — квантовой теорией цветового взаимодействия.
Слабое взаимодействие
По Стандартной модели, сила слабого взаимодействия обуславливает свойства таких лептонов, как электрон, мюон, тау-мезон и соответствующие им нейтрино. Подобно другим силам, лептоны взаимодействуют, обмениваясь квантами, которые называются W– и Z-бозонами. Математически эти кванты также описываются полем Янга — Миллса. В отличие от глюонной силы, взаимодействие, созданное обменом W– и Z-бозонами, слишком слабое, чтобы привести связанные лептоны в резонанс, поэтому мы и не видим появляющееся при работе ускорителей бесконечное множество лептонов.
Электромагнитное взаимодействие
В Стандартную модель входит максвелловская теория взаимодействия с другими частицами. Эта часть Стандартной модели, объясняющая взаимодействие электронов и света и именуемая квантовой электродинамикой (КЭД), подтверждена экспериментально и верна с точностью до одной десятимиллионной — строго говоря, это самая точная теория в истории.
Словом, плоды 50-летних исследований, на которые затрачено несколько сотен миллионов долларов государственных средств, дают нам следующую картину субатомной материи: вся материя состоит из кварков и лептонов, которые взаимодействуют, обмениваясь квантами разных видов, описанными полями Максвелла и Янга — Миллса. В одном предложении мы выразили суть продолжавшихся весь прошлый век обескураживающих исследований субатомного мира. Из этой простой картины можно с помощью одной только математики вывести бесчисленные и непостижимые свойства материи. (Теперь кажется, что это просто, между тем нобелевский лауреат Стивен Вайнберг, один из авторов Стандартной модели, вспоминал, каким извилистым был 50-летний путь к её открытию. Он писал: «В теоретической физике есть традиционное представление, которое, безусловно, влияло на всех, но на меня особенно. Было принято считать, что сильное взаимодействие — слишком сложное явление, непостижимое человеческим разумом»
{46}.)
Симметрия в физике
Подробности Стандартной модели довольно скучны и малозначимы. Самая интересная особенность этой модели — симметрия, лежащая в её основе. Исследованиям материи («дерева») способствовало то, что несомненный признак симметрии виден в каждом взаимодействии. Кварки и лептоны появляются не в произвольном порядке, а согласно определённым закономерностям Стандартной модели.
Строго говоря, симметрией занимаются не только физики. Художники, писатели, поэты и математики с давних пор восхищались красотой, которую усматривали в симметрии. Поэт Уильям Блейк видел в симметрии мистические и даже пугающие свойства, о чём писал в стихотворении «Тигр»: