Я отразил лишь общий смысл аргументов Пенроуза и его оппонентов. Читатель поймёт, что, в сущности, я на стороне его оппонентов. Однако даже если признать, что основанное на гёделевских идеях рассуждение Пенроуза не доказывает то, что оно претендует доказать, а предполагаемая им новая физическая теория вряд ли объяснит то, что она нацелена объяснить, тем не менее Пенроуз прав в том, что любое мировоззрение, основанное на существующей концепции научного рационализма, создаёт проблему для общепризнанных оснований математики (или, как сказал бы Пенроуз, наоборот). Это древняя проблема, которую поднял ещё Платон, проблема, которая, как указывает Пенроуз, обостряется в контексте как теоремы Гёделя, так и принципа Тьюринга. Состоит она в следующем: если реальность состоит из физики и понимается с помощью естественнонаучных методов, то откуда возникает математическая уверенность? В то время как большинство математиков и специалистов по информатике считают уверенность в математической интуиции чем-то само собой разумеющимся и не воспринимают всерьёз проблему примирения этого факта с научным мировоззрением, Пенроуз этой проблемой озабочен и предлагает решение. Его предложение предполагает постижимость мира, отвергает сверхъестественное, признаёт важность творчества для математики, приписывает объективную реальность как физическому миру, так и абстрактным сущностям, и включает объединение основ математики и физики. Во всех этих отношениях я на его стороне.
Поскольку попытки Брауэра, Гильберта, Пенроуза и всех остальных принять вызов Платона, как представляется, не принесли успеха, стоит снова взглянуть на предполагаемое ниспровержение Платоном идеи о том, что математическую истину можно получить с помощью естественнонаучных методов.
Прежде всего, Платон говорит нам, что, поскольку мы имеем доступ только (скажем) к несовершенным кругам, значит, через них мы не сможем получить знание о совершенных кругах. Но почему именно это невозможно? Точно так же можно было бы сказать, что мы не можем открыть законы движения планет, потому что у нас нет доступа к реальным планетам, а есть доступ только к их изображениям. (Инквизиция это и говорила, и я объяснил, почему она ошибалась.) Также можно было бы сказать, что невозможно построить точные станки, потому что первый такой станок пришлось бы строить с помощью неточных станков. Пользуясь преимуществами ретроспективного взгляда, можно заметить, что такая критика вызвана очень грубым — напоминающим индуктивизм — изображением устройства науки, что вряд ли можно считать удивительным, поскольку Платон жил задолго до появления того, что мы могли бы признать наукой. Если, скажем, единственный способ узнать что-либо о кругах из опыта заключается в том, чтобы исследовать тысячи физических кругов, а потом из собранных данных попытаться сделать какой-то вывод об их абстрактных евклидовых партнёрах, то Платон прав. Но если мы создадим гипотезу о том, что реальные круги в строго определённом смысле похожи на абстрактные, и окажемся правы, то мы вполне можем узнать нечто об абстрактных кругах, глядя на реальные. В геометрии Евклида часто используют рисунки для формулировки геометрической задачи или её решения. В таком методе описания существует возможность ошибки, если несовершенство кругов на рисунке оставит ложное впечатление — например, если кажется, что два круга касаются друг друга, хотя на самом деле этого не происходит. Но, поняв отношение между реальными и совершенными кругами, можно аккуратно исключить все подобные ошибки. А не понимая этого отношения, вообще практически невозможно понять геометрию Евклида.
Надёжность знания о совершенном круге, которое можно получить из изображения круга, полностью зависит от точности гипотезы о том, что эти круги сходны между собой в определённых аспектах. Такая гипотеза в отношении физического объекта (рисунка) эквивалентна физической теории, и она не может быть известна с полной уверенностью. Но этот факт не отменяет (как утверждал Платон) возможность изучения совершенных кругов на основе опыта; он лишь делает невозможной полную уверенность. Это не должно тревожить никого из тех, кто ищет не уверенности, а объяснения.
Геометрию Евклида можно абстрактно сформулировать вообще без рисунков. Но способ, которым цифры, буквы и математические символы используются в символьном доказательстве, даёт ничуть не большую уверенность, чем рисунок, и по той же самой причине. Символы — это тоже физические объекты (скажем, чернильные пятна на бумаге), которые обозначают абстрактные объекты. И опять мы полностью полагаемся на гипотезу о том, что физическое поведение символов соответствует поведению обозначаемых ими абстракций. Следовательно, надёжность того, что мы узнаём, манипулируя этими символами, полностью зависит от точности наших теорий об их физическом поведении и о поведении наших рук, глаз и т. д., с помощью которых мы манипулируем этими символами и наблюдаем за ними. Хитроумные чернила, из-за которых случайный символ изменил свой внешний вид, когда мы за ним не следили, — скажем, в результате высокотехнологического розыгрыша с применением дистанционного управления, — могут вскоре ввести нас в заблуждение относительно того, что мы знаем «уверенно».
Теперь давайте повторно исследуем ещё одно допущение Платона: допущение о том, что у нас нет доступа к совершенству в физическом мире. Возможно, он прав в том, что мы не найдём идеальной чести или справедливости, и он безусловно прав в том, что мы не найдём законы физики или множество всех натуральных чисел. Но мы можем найти совершенную руку в бридже или совершенный ход в данной шахматной позиции. Можно сказать и так: мы можем найти физические объекты или процессы, которые полностью воспроизводят свойства заданных абстракций. Мы можем научиться игре в шахматы как с помощью реальных шахмат, так и с помощью шахматного набора совершенной формы. Тот факт, что у коня сколото одно ухо, не делает мат, который он ставит, менее окончательным.
А раз так, то совершенный евклидов круг можно сделать доступным для наших чувств. Платон не осознавал этого, потому что он не знал о виртуальной реальности. Не составит особого труда запрограммировать генераторы виртуальной реальности, которые обсуждались в главе 5, на воспроизведение правил геометрии Евклида, так что пользователь сможет испытать взаимодействие с совершенным кругом. Не имея толщины, круг будет невидимым, если мы не модифицируем также законы оптики, для этого мы могли бы заставить круг светиться, чтобы пользователь знал, где он находится. (Пуристы, возможно, предпочли бы обойтись без этого декорирования.) Мы можем сделать этот круг твёрдым и непроницаемым, чтобы пользователь мог проверить его свойства с помощью твёрдых, непроницаемых инструментов и средств измерения. Пусть виртуальные штангенциркули имеют идеально острую кромку, так что они могли бы точно измерить нулевую толщину. Пользователю можно позволить «рисовать» новые круги или другие геометрические фигуры в соответствии с правилами геометрии Евклида. Размеры инструментов и самого пользователя можно регулировать по желанию, чтобы обеспечить проверку предсказаний геометрических теорем в любом масштабе, сколь угодно малом. В каждом случае воспроизводимый круг будет реагировать точно так же, как предписано аксиомами Евклида. Так что на основе современной науки мы должны сделать вывод, что в этом отношении Платон представлял всё с точностью до наоборот. Мы можем воспринимать совершенные круги в физической реальности (т. е. в виртуальной реальности); но мы никогда не воспримем их в царстве форм, поскольку, если и можно сказать, что такое царство существует, мы никак его не воспринимаем.