Книга Структура реальности. Наука параллельных вселенных, страница 69. Автор книги Дэвид Дойч

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Структура реальности. Наука параллельных вселенных»

Cтраница 69

Тем временем математики продолжали строить свои абстрактные воздушные замки. Для практических целей многие такие построения казались достаточно надёжными. Некоторые из них стали незаменимыми в науке и технике, и в большинстве своём они были связаны между собой красивой и плодотворной объяснительной структурой. Тем не менее никто не мог гарантировать, что вся эта структура или любая существенная её часть не имеет в своей основе логического противоречия, способного превратить её в полную бессмыслицу. В 1902 году Бертран Рассел доказал противоречивость схемы строгого определения теории множеств, которую только что предложил Готлоб Фреге [46]. Это не значило, что больше нельзя было использовать множества в доказательствах. На самом деле совсем немногие математики всерьёз считали, что хоть какой-то из обычных способов использования множеств, арифметики или других ключевых разделов математики может быть некорректным. В результатах Рассела поражало то, что математики считали свой предмет средством получения абсолютной уверенности par excellence через доказательство математических теорем. Сама возможность разногласий относительно обоснованности различных методов доказательства подрывала (как считалось) саму суть их предмета.

Поэтому многие математики почувствовали, что подведение под теорию доказательства, а тем самым и под саму математику, надёжной основы является насущным делом, не терпящим отлагательства. После своих стремительных прорывов они хотели консолидации: раз и навсегда определить, какие виды доказательств являются абсолютно надёжными, а какие — нет. Всё оказавшееся вне зоны надёжности можно было и отбросить, а все попадающее в эту зону стало бы единой основой всей будущей математики.

В этой связи нидерландский математик Лёйтзен Эгбертус Ян Брауэр [47] пропагандировал чрезвычайно консервативную стратегию теории доказательства, известную как интуиционизм, которая и по сей день имеет своих сторонников. Интуиционисты пытаются толковать «интуицию» самым узким возможным образом, сохраняя лишь то, что они считают её неоспоримыми самоочевидными аспектами. Затем они поднимают определённую таким образом математическую интуицию на уровень даже более высокий, чем позволял ей Платон: они ставят её даже выше чистой логики. Саму логику они считают не заслуживающей доверия, за исключением тех случаев, когда её оправдывает прямая математическая интуиция. Например, интуиционисты отрицают, что можно иметь прямое интуитивное понимание какой-либо бесконечной сущности. Поэтому они отрицают существование любых бесконечных множеств, например, множества всех натуральных чисел. Утверждение о том, что «существует бесконечно много натуральных чисел», они сочли бы самоочевидно ложным, а утверждение о том, что «существует больше CGT-сред, чем физически возможных сред», — абсолютно бессмысленным.

Исторически интуиционизм сыграл ценную освободительную роль, как и индуктивизм до него. Он осмелился подвергнуть сомнению то, что считалось совершенно достоверным, и кое-что из этого действительно оказалось ложным. Но в качестве позитивной теории о том, что является или не является корректным математическим доказательством, он не представляет никакой ценности. В действительности интуиционизм — это точное выражение солипсизма в математике. В обоих случаях наблюдается чрезмерная реакция на мысль о том, что мы не можем быть уверены в том, что нам известно о внешнем мире. В обоих случаях предложенное решение состоит в том, чтобы уйти во внутренний мир, который мы якобы знаем непосредственно и, следовательно (?), можем быть уверены, что познали истину. В обоих случаях решение включает отрицание существования — или, по крайней мере, отказ от объяснения — того, что находится вовне. И в обоих случаях этот отказ также делает невозможным объяснение большей части того, что находится внутри предпочитаемой области. Например, если действительно ложно то (как утверждают интуиционисты), что существует бесконечно много натуральных чисел, то мы можем заключить, что должно существовать лишь конечное их количество. Но сколько? И потом, сколько бы их ни было, почему нельзя создать интуицию следующего натурального числа после данного? Интуиционисты оправдываются, говоря, что приведённый мной довод допускает обоснованность обычной логики. В частности, он содержит логический переход: из того факта, что не существует бесконечно много натуральных чисел, делается вывод, что должно существовать какое-то конкретное конечное их количество. Применяемое в данном случае правило вывода называется законом исключённого третьего. Этот закон гласит, что для любого утверждения X (например, «существует бесконечно много натуральных чисел») нет третьей возможности, кроме истинности X и истинности отрицания X («существует конечное множество натуральных чисел»), которая была бы истинной. Интуиционисты хладнокровно отрицают закон исключённого третьего.

Поскольку в разуме большинства людей сам закон исключённого третьего подкреплён мощной интуицией, его отрицание естественным образом вызывает у неинтуиционистов сомнение в том, так ли уж самоочевидна надёжность интуиции интуиционистов. Или, если мы сочтём, что закон исключённого третьего исходит из логической интуиции, он приводит нас к пересмотру вопроса о том, действительно ли математическая интуиция стоит выше логики. И в любом случае, может ли это быть самоочевидным?

Но всё это была критика интуиционизма извне. Это не опровержение: интуиционизм невозможно опровергнуть вообще. Если кто-либо настаивает, что непротиворечивость высказывания для него самоочевидна, то доказать его неправоту невозможно так же, как и если бы он настаивал на том, что существует только он один. Однако, как и в случае с солипсизмом в целом, воистину роковая ошибка интуиционизма открывается не тогда, когда на него нападают, а тогда, когда его принимают всерьёз в качестве объяснения его собственного, произвольно усечённого мира. Интуиционисты верят в реальность конечного множества натуральных чисел 1, 2, 3… и даже числа 10 949 769 651 859. Но интуитивный аргумент, состоящий в том, что, раз у каждого из этих чисел есть следующее, то, они образуют бесконечную последовательность, для интуиционистов не более чем самообман и потому неубедителен. Но разрывая связь между своей версией абстрактных «натуральных чисел» и интуитивным представлением, которое эти числа должны были первоначально формализовать, интуиционисты отказывают себе в праве использовать обычную объяснительную структуру, через которую понимаются натуральные числа. Это создаёт проблему для каждого, кто предпочитает объяснения необъяснённым усложнениям. Вместо того чтобы решить эту проблему, предоставив альтернативную или более глубокую объяснительную структуру для натуральных чисел, интуиционизм делает то же самое, что делала Инквизиция и что делали солипсисты: он ещё дальше уходит от объяснений. Он вводит дальнейшие необъяснённые усложнения (в данном случае — отрицание закона исключённого третьего), единственная цель которых состоит в том, чтобы позволить интуиционистам вести себя так, как если бы объяснения их противников были истинными, но не делая из этого никаких выводов относительно реальности.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация