Книга О том, чего мы не можем знать. Путешествие к рубежам знаний, страница 52. Автор книги Маркус Дю Сотой

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «О том, чего мы не можем знать. Путешествие к рубежам знаний»

Cтраница 52

Однако нужно по меньшей мере иметь сцену для такой квантовой игры, и здесь на передний план, в свою очередь, выходит вопрос создания пустого пространства. Возможно, именно тут и возникает путаница. Некоторые считают, что пустое пространство и есть ничто. Но это ошибка. Трехмерное пустое пространство, вакуум, есть нечто. Это та арена, на которой могут действовать геометрия, математика, физика. В конце концов, уже тот факт, что мы имеем именно трехмерное, а не четырехмерное пустое пространство, указывает на то, что оно представляет собой нечто. Ничто размерности не имеет.

Сейчас существуют теории, позволяющие объяснить, как пространство и время могут возникать подобно частицам, в качестве флуктуаций квантовой гравитации. Кажется, что их математический аппарат достаточен для того, чтобы создать нечто – чтобы создать Вселенную – из ничего. В конечном счете может оказаться, что уран в моей банке происходит не из магазина Amazon, а из математических выкладок.

Рубеж четвертый: Бумажная Вселенная
7

Я осмеливаюсь предложить такое решение этой вековой проблемы: Библиотека безгранична и периодична. Если бы вечный странник пустился в путь в каком-либо направлении, он смог бы убедиться по прошествии веков, что те же книги повторяются в том же беспорядке. Эта изящная надежда скрашивает мое одиночество.

Хорхе Луис Борхес. Вавилонская библиотека [68]

Меня всегда занимал вот какой вопрос: существует ли физическая бесконечность? Мои попытки создать бесконечность путем деления игральной кости на бесконечно малые части потерпели неудачу, когда я добрался до неделимых кварков. Похоже, что даже пространство невозможно делить бесконечно, так как пространство квантуется. Поэтому теперь я собираюсь обратить свои поиски существования бесконечности в другую сторону – не внутрь, а наружу.

Что произойдет, если постоянно двигаться по прямой? Можно ли бесконечно продолжать такое движение? Я думаю, что этот вопрос хоть раз в жизни задавал себе всякий, кто когда-нибудь смотрел в пространство. Если бросить нашу игральную кость в космос, вернется ли она когда-нибудь в начальную точку, или натолкнется на космическую стену и отскочит обратно, или же так и будет вечно лететь, кувыркаясь в вакууме? Вопрос о том, бесконечно ли продолжается Вселенная, оказывается на удивление непрост и связан с тем обстоятельством, что само пространство не статично. Даже если Вселенная и бесконечна, могут существовать теоретические ограничения размеров пространства, доступного для нашего исследования. Возможно, мы никогда этого не узнаем.

Для помощи в путешествии в бесконечность я обзавелся своей собственной Вселенной – точнее, той ее частью, которую я могу увидеть. Я склеил себе звездный глобус, скачанный с веб-сайта Европейского космического агентства. Собственно говоря, это не вполне глобус. Он сделан из двух листов бумаги формата А4, из которых я вырезал и склеил одно из моих любимых геометрических тел – икосаэдр, состоящий из двадцати равносторонних треугольников. Как и кубик из казино, он является одним из пяти Платоновых тел, из которых получаются хорошие игральные кости.

Если ясной ночью посмотреть на небо, кажется, что все звезды нарисованы на огромной черной сфере, охватывающей Вселенную. Именно такую модель Вселенной использовали многие древние культуры. Они верили, что Земля находится в центре этой сферы, которая вращается вокруг оси, проведенной через Полярную звезду, единственную из звезд ночного неба, которая кажется неподвижной, в то время как все прочие звезды обращаются вокруг нее.

Мой бумажный звездный глобус – это модель такого небесного свода. Я поставил его на стол так, чтобы Полярная звезда оказалась в верхней точке икосаэдра. В середине глобуса нанесены знаки Зодиака, отмечающие последовательность месяцев года, – в том числе, разумеется, и мой собственный знак Девы. Нам кажется, что Солнце последовательно перемещается через все эти созвездия, возвращаясь в исходную точку к началу следующего года. В нижней половине глобуса расположены звезды, которые можно увидеть в Южном полушарии; самая яркая из них – Альфа Центавра. На самом деле она состоит из трех звезд, в число которых входит Проксима Центавра, считающаяся ближайшей к нашей собственной звезде, Солнцу.

Разнообразные варианты моего бумажного глобуса делали на протяжении многих тысячелетий. Цицерон пишет, что древнегреческие астрономы изготавливали модели небесного свода, на которых были отмечены звезды, – это были далекие предки моей бумажной Вселенной. К сожалению, ни одна из таких греческих моделей не дошла до нас, но в одном из моих самых любимых оксфордских музеев, в Музее истории науки, можно увидеть другие, сохранившиеся модели. Там есть великолепный глобус высотой около полуметра, сделанный в начале XVI в. в Германии. Созвездия на нем оживают в виде фигур птиц, рыб, животных и людей, напечатанных на бумажных сегментах и наклеенных на сферу.

Хотя моя современная бумажная модель не может сравниться красотой с глобусом XVI в. из Музея истории науки, его икосаэдральная форма восходит к Платону и его вере в то, что небесная оболочка, заключающая в себе нашу Вселенную, может быть не сферой, а додекаэдром – еще одним Платоновым телом, подходящим для игральных костей. И значение этой математической кости для понимания формы Вселенной может быть не таким надуманным, как кажется на первый взгляд.

Треугольные телескопы

Удивительно, что мы вообще что-то знаем о тех областях пространства, в которые мы никогда не сможем попасть. Люди всех культур неизменно смотрели в небо и размышляли о том, что там может быть. Присутствие Солнца и Луны становится очевидным прежде всего. Но как же древним культурам удалось открыть что-то об этих небесных телах, если они были прикованы к поверхности планеты? Я вижу в этом одно из самых замечательных свойств математики – она позволяет нам делать выводы об устройстве Вселенной, не выходя из наших уютных обсерваторий.

Тригонометрия, математика углов и треугольников, была разработана не для того, чтобы мучить школьников, а для ориентации в ночном небе. Она стала нашим первым телескопом. Еще в III в. до н. э. Аристарх Самосский смог вычислить отношение размеров Солнца и Луны к радиусу Земли и определить соотношение их удалений от Земли, используя лишь математические модели треугольников.

Например, когда Луна находится точно в первой или последней четверти, угол между Землей, Луной и Солнцем приблизительно равен 90°. Тогда, измерив угол Φ между Луной, Землей и Солнцем, можно вычислить отношение расстояний между Землей и Луной и между Землей и Солнцем методами тригонометрии. Отношение этих расстояний точно равно косинусу угла Φ, то есть определяется чисто математическими методами.


О том, чего мы не можем знать. Путешествие к рубежам знаний

Прямоугольный треугольник, образуемый Землей, Луной и Солнцем в первой и последней четвертях Луны

Вход
Поиск по сайту
Ищем:
Календарь
Навигация