Книга О том, чего мы не можем знать. Путешествие к рубежам знаний, страница 37. Автор книги Маркус Дю Сотой

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «О том, чего мы не можем знать. Путешествие к рубежам знаний»

Cтраница 37

Я собираюсь рассказать вам, как ведет себя Природа. И если вы просто согласитесь, что, возможно, она ведет себя именно таким образом, то вы увидите, что это очаровательная и восхитительная особа. Если сможете, не мучайте себя вопросом «Но как же так может быть?», ибо в противном случае вы зайдете в тупик, из которого еще никто не выбирался. Никто не знает, как же так может быть [53].

Случайное излучение

Ту революцию, которую совершили эти ученые, превосходно иллюстрируют мои попытки понять, как поведет себя уран в моей банке.

На долгих временных промежутках частота радиоактивного распада приближается к постоянной величине и в среднем вполне предсказуема, в точности как результаты бросков игральной кости. Но физика XX в. утверждает, что между костью и банкой урана есть фундаментальная разница. В случае игральной кости, по крайней мере, создается впечатление, что при наличии достаточного количества данных результат можно предсказать. А вот узнать, когда уран испустит следующую альфа-частицу, по-видимому, невозможно. И полнота информации не играет тут никакой роли. Согласно современной модели квантовой физики, это истинно случайный процесс. В нем можно увидеть пример, опровергающий лапласову концепцию Вселенной с часовым механизмом.

Откровения квантовой физики чрезвычайно неприятны для того, кто ищет определенности и точных знаний. Неужели ничего нельзя сделать, чтобы узнать, когда в банке, стоящей у меня на столе, появится следующая альфа-частица? Возмутительно! Совсем никак не узнать? Вопрос о том, действительно ли этот процесс совершенно случаен и познать его невозможно, или же существует какой-то скрытый, еще не обнаруженный нами механизм, который мог бы объяснить время возникновения излучения, все еще активно обсуждается.

Это неизвестное связано с еще более глубоким уровнем незнания, скрывающим от нас мир предельно малого. Чтобы применить открытые Ньютоном законы движения для вычисления будущего развития Вселенной, необходимо знать положение и импульс всех частиц этой Вселенной. Разумеется, на практике это невозможно, но сделанные в XX в. открытия заставляют думать, что тут существует и более фундаментальная проблема. Даже рассматривая всего один электрон, невозможно одновременно определить его положение и импульс. Наша современная модель предельно малого содержит встроенное ограничение того, что мы можем знать, – так называемый принцип неопределенности Гейзенберга.

Если на первом «рубеже» мы выяснили, что случайность, которую приписывают поведению игральной кости, обозначает всего лишь недостаточное знание, то мир предельно малого, по-видимому, основывается на подлинной случайности: на непознаваемой игральной кости, которая определяет, что случится с куском урана, соседствующим у меня на столе с костью из казино.

Я смирился с непознаваемостью броска игральной кости, поскольку в глубине души я уверен, что эта кость все-таки пляшет в регулярном ритме уравнений Ньютона. Но я не уверен, что когда-нибудь смогу согласиться с непознаваемостью банки радиоактивного урана, который, если верить теории, не танцует ни в чьем ритме. Останется ли его поведение непознаваемым, или же можно ожидать нового теоретического переворота, подобного тому, который открыл нам радикально новые перспективы в начале XX в.?

Волна или частица?

Первые намеки на такую революцию появились, когда ученые пытались понять природу света. Волна это или частица? В своем основополагающем труде по оптике, опубликованном в 1704 г., Ньютон предполагал, что свет имеет корпускулярную природу, то есть состоит из частиц. Если представить свет в виде потока частиц, то его поведение, описанное в книге Ньютона, кажется весьма естественным. Возьмем, например, отражение света. Если нужно узнать, куда будет направлен луч света, падающий на отражающую поверхность, то аналогия с бильярдным шаром, отскакивающим от стенки, позволяет предсказать его траекторию. Ньютон полагал, что такую прямолинейную геометрию световых лучей можно объяснить, только предположив, что свет состоит из частиц.

Однако противники точки зрения Ньютона считали, что природа света гораздо лучше описывается волновой моделью. Казалось, что многие из характеристик света трудно объяснить, если считать его частицей. Эксперимент, поставленный в начале XIX в. английским физиком Томасом Юнгом, по-видимому, забивал гвоздь в гроб представления света как частицы.

Если направить свет на экран, в котором прорезана одна узкая вертикальная щель, и поместить за экраном фотопластинку, способную регистрировать падающий на нее свет, на фотопластинке наблюдается следующая картина: прямо напротив щели и источника света имеется ярко освещенный участок, постепенно тускнеющий по мере удаления от центральной линии.

Пока что результаты опыта соответствуют представлению о корпускулярной природе света: при прохождении частиц сквозь щель могут случаться небольшие отклонения, в результате которых часть света попадает за пределы яркого участка. Правда, если ширина щели мала по сравнению с длиной волны света, то, даже когда такая щель всего одна, по мере удаления от ярко освещенного центрального участка можно наблюдать некоторые волнообразные колебания интенсивности, в которых можно видеть проявление волновой природы света.


О том, чего мы не можем знать. Путешествие к рубежам знаний

Интенсивность света, зарегистрированного фотопластинкой после прохождения через одну узкую щель


Корпускулярная модель света оказалась в опасности, когда Юнг прорезал в экране вторую вертикальную щель, параллельную первой. Можно было бы ожидать появления двух ярко освещенных участков, расположенных один рядом с другим, каждый из которых соответствовал бы прохождению света через одну из щелей. Но Юнг наблюдал совсем иную картину. На фотопластинке появился ряд чередующихся светлых и темных линий. Как ни странно, некоторые участки пластинки были освещены, только когда была открыта одна щель, и оказывались затемнены после открытия второй. Если свет состоит из частиц, подобных бильярдным шарам, как же может быть, что, когда мы открываем ему новые пути для распространения, он оказывается не в состоянии достичь таких участков? Этот эксперимент породил серьезные сомнения в правоте ньютоновской корпускулярной модели света.

Казалось, что такие светлые и темные полосы может объяснить только волновая модель света. Если в неподвижную воду озера одновременно бросить два камня, то волны, порожденные падением камней, будут взаимодействовать так, что некоторые их части будут объединяться, образуя гораздо более сильные волны, а некоторые другие – гасить друг друга. Если пустить в воду деревянный брусок, такое взаимодействие можно увидеть по соударениям комбинированных волн с его гранью. По всей длине такой грани можно наблюдать последовательность гребней и впадин набегающей волны.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация