Полкинхорн неизменно подчеркивает, что применение таких предельно малых данных для осуществления каких-либо изменений требует абсолютно всеобъемлющего вмешательства свыше. Речь должна идти не о «Боге в деталях», а о Боге всеведущем. Поскольку теория хаоса утверждает, что даже положение одного электрона на другом конце Вселенной может оказать влияние на всю систему, то, чтобы управлять происходящим, необходимо располагать полным, всеобъемлющим знанием всей этой системы – то есть всей Вселенной. Нельзя выделить часть Вселенной и пытаться делать предсказания на основе этой части. Поэтому использование такой трещины в том, что нам неизвестно, требует знания всего целого.
Теория хаоса детерминистична, так что это не попытка использовать случайность, присущую, например, квантовой физике, в качестве средства влияния на результаты. По мнению Полкинхорна, способ решения задачи квадратуры круга детерминизма и оказания влияния на систему состоит в использовании зазора между эпистемологией и онтологией, между тем, что мы знаем, и тем, что соответствует истине. Раз мы не можем получить полное описание состояния Вселенной на данный момент, то, с нашей точки зрения, детерминированности нет. Есть множество разных сценариев, совпадающих с нашим объективным описанием того, что мы сейчас знаем об устройстве Вселенной. Полкинхорн считает, что это дает Богу возможность вмешиваться в любой точке времени, перекидывая систему из любого сценария в любой другой, причем мы остаемся в неведении относительно таких перемещений. Но, как мы уже видели, теория хаоса утверждает, что такие малые перемещения могут приводить к огромным изменениям результатов. При этом Полкинхорн старательно подчеркивает, что переходы между системами допустимы, если речь идет только об изменениях информации, а не энергии. Правила запрещают нарушать законы физики. Как говорит сам Полкинхорн: «Ни смена времен года, ни чередование дня и ночи отброшены не будут».
Даже если вы находите такую идею чересчур замысловатой (как нахожу ее я), сходный принцип, возможно, лежит в основе нашего ощущения воздействия мира. Вопрос свободы воли тесно связан с вопросами философии редукционизма. Свобода воли в большинстве случаев описывает невозможность какого-либо значимого сведения к атомистической картине мира. Поэтому создание системы, в которой мы обладаем свободой воли, кажется логичным, так как на уровне взаимодействия человека со Вселенной она представляется именно свободной. Если бы устройство мира было столь очевидно детерминистическим, допускающим лишь малые вариации при неощутимых изменениях, мы не считали бы, что обладаем свободой воли.
Замечательно, что тот самый Ньютон, который внушил нам веру в детерминистическую Вселенную с часовым механизмом, также полагал, что в его уравнениях найдется место для божественного вмешательства. Он писал о своей вере в то, что время от времени, когда развитие событий кажется отклоняющимся от верного курса, Бог бывает вынужден заново запускать Вселенную. Это вовлекло его в яростный спор с немецким соперником, математиком Готфридом Лейбницем, который не понимал, почему бы Бог не мог с самого начала устроить все наиболее совершенным образом:
Сэр Исаак Ньютон и его последователи придерживаются также весьма странного мнения о роли Бога. Согласно их доктрине, Господь Всемогущий должен время от времени заводить свои часы – иначе они перестанут ходить. По-видимому, его предусмотрительности не хватило на то, чтобы сделать их движение вечным.
На грани хаоса
Ньютон и его математика дали мне ощущение того, что я могу познать будущее, не ожидая, пока оно станет настоящим. То, сколько раз я слышал цитату из Лапласа о возможности познания всего благодаря уравнениям движения, свидетельствует о широко распространенной среди ученых уверенности в теоретической возможности познания Вселенной.
Математика XX в. обнаружила, что теория не всегда может быть реализована на практике. Даже если и справедливо утверждение Лапласа о том, что полное знание современного состояния Вселенной в сочетании с математическими уравнениями может привести к полному познанию будущего, мы никогда не сможем получить такого полного знания. Шокирующее открытие теории хаоса XX в. состоит в том, что даже приближение к такому знанию нам не поможет. Расходящиеся траектории хаотического бильярда означают, что, поскольку мы не можем узнать, на какой из траекторий находимся, наше будущее так и останется непредсказуемым.
Теория хаоса утверждает, что существуют вещи, которые мы никогда не сможем познать. Та самая математика, от которой я так надеялся получить полное знание, привела к прямо противоположному результату. Но положение не вполне безнадежно. Во многих случаях уравнения нечувствительны к малым изменениям и, следовательно, позволяют предсказывать будущее. В конце концов, именно так нам удалось посадить космический аппарат на пролетающую мимо комету. И не только: как показывает работа Боба Мэя, математика даже может помочь нам узнать, чего именно мы не можем узнать.
Но одно открытие, сделанное в конце XX в., поставило под вопрос даже и основополагающее положение Лапласа о теоретической предсказуемости будущего. В начале 1990-х гг. аспирант по имени Ся Чжихун доказал, что пять планет можно расположить таким образом, что, когда они будут отпущены, гравитационное притяжение вынудит одну из планет вылететь из системы и достичь бесконечной скорости за конечное время
[31]. Хотя никакого столкновения планет не происходит, уравнения неизбежно предсказывают результаты, катастрофические для обитателей такой несчастливой планеты. Того, что происходит после этого момента, уравнения предсказать не могут.
Открытие Ся оспаривает мнение Лапласа о том, что уравнения Ньютона предполагают возможность познания будущего при наличии полного знания настоящего, на самом фундаментальном уровне, потому что даже уравнения Ньютона не могут предсказать, что случится с этой несчастной планетой после того, как она достигнет бесконечной скорости. Теория достигает в этом месте сингулярности, и никакие дальнейшие предсказания не имеют смысла. Как мы увидим на следующих «рубежах», соображения теории относительности ограничивают физическое осуществление такой сингулярности, так как несчастная планета в конце концов достигнет скорости света в вакууме, на которой, как было показано, теория Ньютона является лишь приближенным представлением реальности. И тем не менее этот пример показывает, что для познания будущего одних уравнений недостаточно.
Интересно послушать, что говорил Лаплас на смертном одре. Видя, как его собственная сингулярность приближается к нему, оставляя ему лишь ограниченное время, он тоже признал: «То, что мы знаем, невелико, а то, чего мы не знаем, огромно»
[32]. ХХ век показал, что даже если мы узнаем многое, размеры того, чего мы не знаем, останутся огромными.