Книга Нанонауки. Невидимая революция, страница 13. Автор книги Кристиан Жоаким, Лоранс Плевер

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Нанонауки. Невидимая революция»

Cтраница 13

Если классический транзистор сделать меньше 20 нм, то в нем останется совсем мало «деятельных» электронов (тех, которые работают в транзисторе). Ну и что? А почему бы не сделать прерыватель (ключ) на одном-единственном электроне? Как только электрон проникает в классический транзистор, суммарная энергия внутри транзистора увеличивается. Электрон черпает эту энергию из тепловых флуктуаций в своей точке «отправления», и, поскольку приращение энергии ничтожно, оно теряется — «тонет» — в тепловых флуктуациях в точке «прибытия». Так что электроном больше или электроном меньше — транзистору («классическому»), в общем, все равно. А вот если транзистор занимает площадку в десяток нанометров и меньше, то такой микроскопической прибавкой энергии пренебречь не удастся. И никаких тепловых микроколебаний не хватит, чтобы замаскировать эту прибавку. Более того, попав в транзистор, электрон загородит дорогу другим электронам. Это явление называют «блокадой Кулона»: ни одному лишнему электрону просочиться не удастся, потому что энергии не хватит — уж очень она дорогая. Происходит так, как в шлюзе: как только он наполнен водой, новая вода прекращает в него поступать — просто места больше нет. «Блокаду Кулона» описали в 1951 году, но о том, что на этом эффекте можно построить транзистор с одиночным электроном, догадались только в 1985 году, а опробовали эту идею в эксперименте лишь двумя годами позже, применив очень изощренные методики электронной литографии.

Еще одна совсем иная электроника может родиться не из использования заряда электрона, а из работы с его элементарным магнитным моментом, который называется спином и истолковывается как вращательный момент, — так, словно бы электрон вращается вокруг своей оси (spin по-английски значит «крутиться», «вращаться»). И, как маленький магнитик, этот спин производит магнитное поле, направленное вверх или вниз — соответственно направленности вращения электрона. Если вещество — не магнит, то ориентации спина (вращательного момента) будут случайными. Значит, в классическом транзисторе ориентация спина любого электрона может быть какой угодно и потому не влияет на свойства транзистора (разные спины компенсируют друг друга). Но если взять материал с выраженными магнитными свойствами (магнетик), то, напротив, количество электронов со спином, обращенным вверх, будет сильно отличаться от числа электронов со спином, ориентированным вниз, что и приводит к намагничиванию материала. Спины электронов, попадающих в магнитный материал, по необходимости взаимодействуют с магнитным моментом этого материала. Положим, что через ферромагнетик (это обычные магниты из железа, никеля или кобальта) течет электрический ток — поток электронов со спинами произвольной ориентации. В таком случае у тех электронов, спины которых ориентированы в одном направлении, больше шансов пройти свой путь, чем у прочих электронов (с разнонаправленными спинами). Получается, что ферромагнетик действует как фильтр, пропускающий электроны с некоторой — «предпочтительной» — ориентацией спина и сильно мешающий продвижению остальных электронов. Еще одно наблюдение: электрическому току (потоку электронов) по силам изменить магнитные моменты на тех участках магнитного материала, которые оказались по соседству с потоком электронов — иначе говоря, если сила тока достаточно велика, то есть движется множество электронов, то их поток поменяет ориентацию магнитного момента самого материала. Исследования подобных явлений стали называть «спинтроникой» [12]. На переворачивание спинов уходит куда меньше времени и энергии, чем на переключение транзистора (из закрытого состояния в открытое или наоборот), уже потому, что электрону проще и быстрее опрокинуться, чем преодолеть некоторое расстояние. Вот почему спинтронная электроника в такой чести у многих исследователей.

Как бы то ни было, похоже, что полупроводниковый транзистор, уже уменьшившийся за годы миниатюризации донельзя, придется заменить каким-то другим устройством. И пока представляется, что в качестве возможных заменителей наиболее предпочтительны транзистор с одним электроном и спинтронный транзистор — потому что такие приборы могут изготавливаться посредством технологий, уже освоенных по ходу миниатюризации классических транзисторов. Во всяком случае, ясно одно: физики в новых приборах должны как-то использовать квантовые эффекты, а не пытаться обходить или как-то нивелировать эти неизбежные явления.

КРАСНАЯ НИТЬ

Нанотехнологическое предание повествует о прозорливости Фейнмана: мол, именно его якобы пророчества воплотились в отказе от сверхминиатюрных транзисторов в пользу волокон ДНК и микромеханики. На самом деле становление этих нанотехнологий происходило в ходе непрерывного развития обычных приемов, разработанных еще в конце 1950-х годов; достаточно назвать фотолитографию — правда, в приложении к формированию компонентов микроэлектроники и микромеханики, или электронную литографию — в приложении к мезоскопической физике. Такие нанотехнологии подчас имеют дело с предметами, размеры которых измеряются десятками и сотнями нанометров и лишь допуск точности исчисляется единицами нанометров. Тем не менее именно они вышли на передний план и сумели связать свои наименования с ярлыком «бесконечно малые»… тогда как совсем иная технология осталась в тени или скорее была задвинута в тень: речь о технологии действительно нанометрического масштаба, манипулирующей отдельными атомами и позволяющей создавать устройства с размерами в считаные нанометры при допуске точности порядка 0,1 нм. Об этой технологии мы поговорим в следующей главе.

Технологическая алчность побуждает втискивать как можно больше транзисторов в как можно меньшую полупроводниковую пластиночку — в этом и состоит экономический и практический интерес миниатюризации, однако в нашей жизни миниатюризация выводит еще и на некий путь, ведущий к вопросу метафизическому: а не удастся ли однажды смастерить такую машину, которая сможет думать? И этот вопрос красной нитью проходит во многих работах сегодняшних ученых.

Когда Паскаль воплощал в неживом веществе свою вычислительную машину, его «паскалина» не думала. Когда Джеймс Уатт изобретал маленькую паровую машину для своей лаборатории, он придумал для нее управляющую программу в виде трех дырочек, пробитых в жестяной пластинке. И эта пластинка с дырочками определяла очередность, в которой открывались и закрывались вентили и клапаны его машины. Паровая машина тоже не думала, кто спорит. Когда в 1820 году Чарльз Бэббидж задумал построить первую механическую вычислительную машину, она могла выполнять множество различных действий, но, конечно, при этом ни о чем не думала. В наши дни, когда инженеры втискивают в малюсенькую коробочку 100 млн транзисторов, такая шкатулочка, очевидно, тоже не мыслит. Да и вообще возможно ли собрать из шестеренок, трубок, вакуумных ламп или транзисторов мыслящую машину? В 1957 году Джон фон Нейман объявил, что для этого потребуется 100 000 транзисторов. Миниатюризация помогла преодолеть и этот рубеж, причем уже давно, а машины все еще так и не научились думать.

Глава 3
Оставаясь на дне

В конце концов, как бы ни хотелось миниатюризировать и миниатюризировать, приходит день, когда кусочек вещества становится слишком уж маленьким, чтобы втиснуть в него приборчик и тем более машину… В 1960-х годах думали, что миниатюризация наткнется на естественный предел тогда, когда выйдет на размеры молекул живого вещества — а это белки или ДНК, молекулы из тысяч атомов. Как раз в то время узнали о способности макромолекул накапливать информацию, транспортировать другие молекулы, вырабатывать энергию и общаться между собой. Так, есть энзимы [13] с несколькими активными участками, и активность этих участков управляется другими молекулами — иначе говоря, такой энзим «срабатывает» по команде, которой может служить молекулярный или электрический сигнал — что немного похоже на срабатывание электронного реле. В 1970 году Жан Моно в своей работе о «Случайности и необходимости» [Le Hasard et la Nécessité] писал, что вызов, брошенный физикам, состоит в том, что минимальная масса электронного реле примерно равна 10-2 г, а масса энзима, способного выполнять те же действия, что и реле, порядка 10-17 г, то есть в миллион миллиардов раз меньше! Тем самым подчеркивались возможности тогдашних сверхминиатюрных устройств, а им было далеко до тех чудес, которыми мы располагаем сегодня. В то время и думать никто не смел о машинах, по размеру меньших, чем макромолекулы. Да и сами макромолекулы казались чересчур крошечными, чтобы на их основе создавать какие-то работающие устройства. Моно бросил ученым вызов: он говорил, что вот есть молекула, она вполне материальна, устойчива во времени (существует достаточно долго) и имеет определенную протяженность в пространстве — перечисленных качеств довольно, чтобы эту молекулу превратить в машину. Но как? Идеи Моно казались абсолютно безосновательными. Но в 1990-е годы родилась иная мысль — почему бы не перевернуть порядок создания машины? То есть начинать не с большого объема вещества, из которого понемногу удаляют все лишнее, в итоге получая миниатюрную машину, а наоборот — взять несколько атомов и строить из них машину, добавляя по мере необходимости новые атомы. Вот на этой идее и строится некая новая технология — нанотехнология. Иначе этот перевернутый порядок формирования машины можно назвать «восходящим», и настоящая глава посвящена рассмотрению первого этапа создания двигателей и механизмов из молекулярных комплексов: мы с самого начала «остаемся на дне» шкалы величин, чтобы понять, как обращаться с одним-единственным атомом или молекулой, в которой не более считаных десятков атомов. Мы будем учиться манипулировать частицами много меньше биологических объектов.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация