Онлайн книга «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики»
Полное число пар | |
1-й месяц: 1 взрослая пара | 1 |
2-й месяц: 1 взрослая пара и 1 пара крольчат | 2 |
3-й месяц: 2 взрослые пары и 1 пара крольчат | 3 |
4-й месяц: 3 взрослые пары и 2 пары крольчат | 5 |
5-й месяц: 5 взрослых пар и 3 пары крольчат | 8 |
6-й месяц: 8 взрослых пар и 5 пар крольчат | 13 |
Важное свойство последовательности Фибоначчи состоит в том, что она рекуррентная, — то есть каждый новый член порождается предыдущими. Это же помогает понять, почему числа Фибоначчи настолько распространены в природе. Многие живые организмы растут, следуя рекуррентному процессу.
* * *
Последовательность Фибоначчи не только описывает формирование плодов и процесс безостановочного размножения кроликов, но и обладает разнообразными увлекательными математическими свойствами. Закономерность будет легче увидеть, если мы выпишем первые 20 чисел. Каждое число Фибоначчи традиционно записывается с использованием буквы F, снабженной нижним индексом, который обозначает положение данного числа в последовательности:
F0 = 0. | |||
F1 = 1. | F6 = 8, | F11 = 89, | F16 = 987, |
F2 = 1. | F7 = 13, | F12 = 144. | F17 = 1597, |
F3 = 2, | F8 = 21, | F13 = 233, | F18 = 2584, |
F4 = 3, | F9 = 34, | F14 = 377, | F19 = 4181, |
F5 = 5, | F10. = 55, | F15 = 610, | F20 = 6765. |
При более близком рассмотрении удается заметить, что наша последовательность воспроизводит саму себя многими и весьма неожиданными способами. Взглянем на числа F3, F6, F9 — другими словами, на каждое третье F-число. Все они делятся на 2. А числа F4, F8, F12 — то есть каждое четвертое F-число — делятся на 3. Каждое пятое F-число делится на 5, каждое шестое F-число делится на 8, и каждое седьмое — на 13. Эти делители в точности являются F-числами из самой последовательности.
Другой впечатляющий пример получается при вычислении 1/F11, то есть 1/89. Это число равно сумме чисел
0,0
0,01
0,001
0,0002
0,00003
0,000005
0,0000008
0,00000013
0,000000021
0,0000000034
Таким образом, здесь снова высовывает голову последовательность Фибоначчи [51].
А вот другое интересное математическое свойство этого ряда. Возьмем любые три последовательных F-числа. Произведение первого на третье всегда на 1 отличается от квадрата второго числа.
Для F4, F5, F6 имеем F4 × F6 = F5 × F5 - 1 (24 = 25 - 1).
Для F5, F6, F7 имеем F5 × F7 = F6 × F6 +1 (65 = 64 + 1).
Для F18, F19, F20 : F18 × F20 = F19 × F19 - 1 (17 480 760 = 17 480 761 - 1).
Это свойство лежит в основе магического фокуса возрастом в несколько сотен лет. Фокус состоит в том, что квадрат, состоящий из 64 единичных квадратов, можно разрезать на четыре куска так, что, сложив их по-другому, мы получим прямоугольник из 65 единичных квадратов. Вот как это делается: нарисуем квадрат, составленный из 64 маленьких квадратиков. Сторона большого квадрата имеет длину 8. В последовательности Фибоначчи два F-числа, идущие перед 8, — это 5 и 3. Разделим большой квадрат на куски, используя длины 5 и 3. Куски можно сложить по-другому в прямоугольник со сторонами длиной 5 и 13, и площадь этого прямоугольника равна 65: