Книга Красота физики. Постигая устройство природы, страница 33. Автор книги Фрэнк Вильчек

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Красота физики. Постигая устройство природы»

Cтраница 33

Пауки, так сказать, до мозга костей знали бы, что силы передаются через наполняющую пространство среду и проходят через нее с конечной скоростью. Они инстинктивно избегали бы пустоты. Они все были бы Фарадеями и скорее, чем мы, породили бы идею Всемирной паутины (илл. 22).

Уравнения Максвелла

В «Динамической теории электродинамического поля» Максвелл начинает все заново. Работа «О физических силовых линиях» напоминала огромный Вопрос, касающийся выводов из одной спекулятивной Гипотезы, нуждающейся в поддержке от Природы. «Динамическая теория» следовала традиции «Начал», переходя от наблюдаемых фактов к системе основных уравнений.

В то время как Ньютон опирался на законы планетарного движения Кеплера, Максвелл в качестве основы взял четыре закона, открытые несколькими учеными ранее: два закона Гаусса, закон Ампера и закон индукции Фарадея. (Они описываются ниже, а также в разделе «Термины».) Максвелл выразил эти законы на языке электрического и магнитного флюидов Фарадея, который он сделал точным и математическим в своих более ранних работах.

Также Максвелл добавил свой собственный закон, дуальный закону Фарадея. Это дополнение не было основано на экспериментах [42]. Как мы уже говорили, Максвелл первоначально пришел к постулированию этого закона, работая со следствиями из своей абсурдной модели. В новой трактовке он показал, что новый закон необходим, чтобы сделать старые законы согласованными!

На цветной вклейке N воспроизведены уравнения Максвелла. То, что они могут быть представлены в рисунках, является важным аспектом их красоты! Эта система из четырех уравнений, объединяющих четыре уже известных закона с новым дополнением, сейчас всем известна как уравнения Максвелла. (В четырех уравнениях скрыто пять законов, поскольку одно из уравнений суммирует два физических явления.) Вплоть до настоящего времени они остаются лучшим фундаментальным описанием электромагнетизма и света.

Здесь я не могу устоять от того, чтобы воспроизвести действительное содержание уравнений Максвелла. После того как я их так разрекламировал, вам, возможно, будет любопытно в точности узнать, из-за чего весь этот шум!

Я пытался сделать это способом, который достаточно краток, точен и понятен. Но существует некоторое противоречие между этими целями, и в результате этот отрывок может показаться вам сложным. Я советую вам подходить к нему так, как вы, может быть, подходите к незнакомому произведению искусства – как к возможности, а не как к бремени. Вы можете вначале прочитать его бегло и рассмотреть картинки, чтобы получить общее представление. Затем вы сможете решить, хочется ли вам читать его более внимательно. И я надеюсь, что вы это сделаете, – в конце концов, уравнения Максвелла являются великим произведением искусства. Вы можете сделать это на досуге, поскольку в нашей дальнейшей медитации не будет отсылок к этим деталям. Также вы можете справиться в «Терминах», где то же самое рассматривается с немного иных точек зрения. В комментариях я также указал несколько великолепных бесплатных веб-сайтов, где вы можете интерактивно изучать уравнения Максвелла.

Вначале я приведу неформальную версию, затем – более точную, в описаниях и рисунках для каждого из пяти физических законов, приводящих к четырем уравнениям Максвелла. Чтобы следовать за ходом мысли, обратитесь к цветной вклейке N, поскольку мы прочтем ее всю, строчка за строчкой.

Вначале разрешите дать пояснения к обозначениям на рисунках: Красота физики. Постигая устройство природы обозначает электрическое поле, Красота физики. Постигая устройство природы – магнитное поле, Красота физики. Постигая устройство природы и Красота физики. Постигая устройство природы – скорости изменения этих величин во времени, Q – это электрический заряд, а Красота физики. Постигая устройство природы – электрический ток. (Маленькие стрелки напоминают о том, что все эти величины векторные – они имеют направление, так же как и величину.)

Теперь перейдем к законам:

Электрический закон Гаусса выражает равенство между потоком электрического поля, уходящим из некоторого объема, и электрическим зарядом внутри этого объема. Он говорит о том, что электрические заряды – это точки зарождения электрических силовых линий (или точки их завершения). Они находятся там, где электрические силовые линии могут начаться или закончиться.

Определение потока проще всего понять по ассоциации с течением жидкости. Электрическое поле, как мы уже обсудили, это величина, которая в каждой точке имеет численное значение и направление. Поле скоростей в текущей жидкости имеет такой же характер. Если у нас есть некий объем и поле скоростей, мы можем рассчитать, насколько быстро жидкость покидает этот объем. Это, по определению, и есть поток жидкости, покидающей данный объем. Если мы произведем над электрическим полем те же самые математические операции, которые мы только что провели над полем скорости жидкости, чтобы высчитать его поток, мы получим (по определению) поток электрического поля.

Магнитный закон Гаусса гласит, что поток магнитного поля, исходящего из любого объема, равен нулю. Магнитный закон Гаусса, конечно, очень похож на электрический закон Гаусса, но с дополнительным упрощением – ведь магнитного заряда не может быть! Он говорит, что у магнитных полей нет источников – магнитные силовые линии никогда не могут завершиться, но должны вместо этого продолжаться вечно или замыкаться сами на себя.

Закон Фарадея особенно интересен, потому что он включает время. Закон устанавливает соотношение между электрическими полями и темпом изменения магнитных полей. Закон гласит, что, когда магнитные поля изменяются во времени, они порождают электрические поля, закручивающиеся вокруг магнитных.

Чтобы точно сформулировать закон Фарадея, рассмотрим кривую, которая образует границу поверхности. Закон Фарадея утверждает равенство циркуляции электрического поля по этому контуру (с отрицательным знаком) скорости изменения магнитного потока через поверхность. Циркуляцию, как и поток, проще всего понять через ассоциацию с полем скоростей в течении жидкости. Мысленно расширим нашу кривую, превратив ее в узкую трубку, и рассчитаем количество жидкости, проходящей по этой трубке в единицу времени. Это и будет циркуляция потока жидкости. Если мы проведем над электрическим полем те же математические операции, которые мы провели над полем скоростей жидкости, то получим (по определению) циркуляцию электрического поля.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация