Книга Происхождение жизни. От туманности до клетки, страница 3. Автор книги Михаил Никитин

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Происхождение жизни. От туманности до клетки»

Cтраница 3

Механика орбитального движения во многом непривычна для неспециалистов. На орбите, чтобы увеличить скорость движения, надо тормозить, а чтобы ее уменьшить, – разгоняться! Проиллюстрируем это на примере выведения спутников на геостационарную орбиту. Эта околоземная орбита, лежащая в плоскости экватора, с периодом обращения 23 часа 56 минут, очень удобна для спутников связи, потому что спутник на ней все время находится над одной точкой Земли и наземную антенну на него можно навести один раз и больше не двигать. Геостационарная орбита имеет высоту 35 786 км над поверхностью Земли, и спутник на ней движется со скоростью 3,07 км/с. При выведении ракета-носитель сначала доставляет спутник на низкую околоземную орбиту, проходящую примерно в 200 км над поверхностью Земли. Скорость на ней равна первой космической скорости, около 8 км/с. Затем спутник включает двигатель и разгоняется еще на 2 км/с, после чего оказывается на так называемой геопереходной орбите. Это эллиптическая орбита с большим эксцентриситетом, которая в нижней точке касается низкой околоземной, а в верхней – геостационарной орбиты. По второму закону Кеплера скорость спутника в верхней точке оказывается намного ниже, чем в нижней, – около 1,7 км/с. Совершив полоборота по геопереходной орбите, в верхней точке спутник включает двигатель во второй раз и разгоняется еще примерно на 1,3 км/с. При этом он оказывается на геостационарной орбите. Несмотря на два разгона, его скорость упала с 8 до 3,07 км/с. Кинетическая энергия летящего спутника при этом не исчезла бесследно, а перешла в потенциальную – он поднялся намного выше над Землей.

Гравитационная дифференциация

Когда в XVIII веке впервые удалось измерить массу Земли, оказалось, что ее средняя плотность составляет 5,5 г/см³. Однако плотность горных пород на поверхности Земли почти вдвое меньше – около 3 г/см³. Следовательно, внутри Земли должно быть более плотное вещество. По данным геологии, в центре Земли и других планет земного типа находится ядро из железа с примесями никеля и других металлов, со средней плотностью 10 г/см³. Ядро окружает полужидкая силикатная мантия, покрытая сверху твердой силикатной корой с плотностью около 3 г/см³.

При образовании планет составляющие их силикаты и металлы были перемешаны. В дальнейшем планеты расслаивались: железо тянуло к центру Земли и формировало ядро, а силикаты всплывали наверх, образуя мантию и кору.

В процессе расслоения в глубинах планеты выделяется тепло, поддерживающее ядро и мантию в расплавленном состоянии. Другим источником энергии внутри планеты является радиоактивный распад нестабильных элементов. Гравитационная дифференциация поддерживает конвективные течения в мантии, а в случае Земли – еще и движение плит земной коры относительно друг друга.

При ином химическом составе небесного тела оно разделяется на другие слои. Например, крупные спутники планет-гигантов имеют силикатное ядро, мантию из жидкой воды и ледяную кору. На Европе и Энцеладе есть даже аналоги вулканизма и движения литосферных плит – многокилометровые фонтаны воды и движение ледяных блоков коры. Сами планеты-гиганты разделяются на протяженную атмосферу из водорода и гелия, более тяжелый слой жидких метана, аммиака и воды и силикатно-железное ядро. Большую часть их диаметра составляет массивная плотная атмосфера.

Приливные явления

Законы Кеплера подразумевают, что орбиты планет и спутников неизменны и вечны. Однако эти законы выполняются в точности, только если размеры тел ничтожно малы по сравнению с расстояниями между ними, а влиянием планет друг на друга можно пренебречь. Поскольку реальные планеты и спутники имеют заметные размеры, сила притяжения действует на их ближние к друг другу части сильнее, чем на дальние. За счет этой разницы небесные тела немного деформируются, их форма становится слегка вытянутой, подобно дыне. В случае Земли ее океаны легче поддаются деформации, чем земная кора, и изменения их уровня под действием тяготения Луны вызывают приливы, благодаря чему эти силы получили свое название.

Приливные силы быстрее уменьшаются с расстоянием, чем сила тяжести. При увеличении расстояния в два раза притяжение между телами ослабляется в четыре раза, а приливные влияния – в восемь раз. Поэтому на Земле приливные силы, вызванные Луной, преобладают над приливными силами Солнца, хотя Солнце гораздо массивнее Луны.

Движение масс воды, натыкающихся на континенты, и трение в деформируемой земной коре приводят к выделению тепла. Источником этой тепловой энергии является вращение планеты, и оно постепенно замедляется под действием приливов. Кроме того, похоже, что приливное действие Луны направляет дрейф материковых плит земной коры – их движение заметно несимметрично в направлении запад – восток (Riguzzi et al., 2010).

Благодаря приливным силам возможно взаимодействие между вращением планеты и орбитальным движением ее спутников. В системе Земля – Луна вращение Земли вокруг своей оси гораздо быстрее, чем орбитальное движение Луны, поэтому приливный «горб» на Земле немного обгоняет Луну. Притяжение Луны к этому горбу приводит к тому, что вращение Земли постепенно замедляется, а кинетическая энергия передается Луне. При этом радиус лунной орбиты растет, также растет и период обращения Луны вокруг Земли.

Более крупный из спутников Марса, Фобос, совершает оборот вокруг планеты всего за 6 часов, тогда как период вращения Марса вокруг своей оси – 24,5 часа, чуть больше, чем у Земли. Поэтому в системе Марс – Фобос происходит передача кинетической энергии в обратную сторону – от спутника к планете. Фобос неуклонно приближается к Марсу и в ближайшие 15–20 млн лет достигнет так называемого предела Роша, где приливные силы сравняются с тяготением Фобоса, скрепляющим его в единое тело. Достигнув этого предела, Фобос разрушится, и вокруг Марса появится кольцо из камней и пыли, подобное кольцам Сатурна.

При движении спутника по эллиптической орбите его скорость максимальна в ближайшей к планете части орбиты и там же максимально приливное взаимодействие. Поэтому приливы могут изменять форму орбиты спутника. Так, орбита Луны становится более вытянутой под действием приливов, а у орбит спутников Юпитера, наоборот, вытянутость уменьшается.

Орбитальные резонансы

Есть и другая причина, по которой движение планет немного отклоняется от описанного в законах Кеплера. Это гравитационное взаимодействие между планетами. Хотя оно гораздо слабее, чем их притяжение Солнцем, за миллионы лет его влияние может накапливаться и сильно изменять орбиты. Притяжение двух планет друг к другу максимально в период противостояния – когда расстояние между ними минимально. Поэтому влияние разных планет на движение друг друга вокруг Солнца зависит от отношения их периодов обращения. Если эти периоды не образуют простого соотношения типа 1:2, 2:3 или 2:5, то противостояния происходят в разных участках орбит без строгой закономерности, а изменения орбит на больших промежутках времени стремятся к нулю. Если периоды обращения планет относятся как небольшие целые числа, то говорят, что их орбиты находятся в резонансе. В этом случае противостояния происходят в одних и тех же местах орбиты, небольшие изменения орбит постепенно накапливаются, и со временем орбиты могут сильно изменяться [1].

Вход
Поиск по сайту
Ищем:
Календарь
Навигация