По изотопному составу азота и водорода Земля и Марс очень близки к основному подтипу хондритных метеоритов – CI. Содержание тяжелых изотопов (15N и дейтерий) в них выше, чем в атмосфере Юпитера, но ниже, чем в кометном льду. Одна из комет (103P/Hartley²) содержит такое же количество дейтерия, как планеты и хондриты, но по изотопам азота все равно сильно отличается от них. Следовательно, вклад комет в запасы воды и азота на Земле и Марсе не превышает 10 %. Это хорошо согласуется с оценкой массы комет, упавших на Землю в период поздней метеоритной бомбардировки, по количеству и размеру кратеров на Луне. Атмосфера Марса обогащена тяжелыми изотопами азота и водорода по сравнению с твердыми породами планеты, что проще всего объясняется сортировкой изотопов при потере атмосферы под действием солнечного ветра с тех пор как на Марсе практически исчезло магнитное поле (рис. 4.1).
По соотношению летучих элементов Земля отличается от хондритных метеоритов. Самое заметное отличие – это примерно тысячекратная недостача азота и ксенона. Обеднение по другим инертным газам скромнее: в 20 раз – для криптона, в 50 – для аргона и примерно в 100 раз – для неона (рис. 4.2).
Скорее всего, недостающий азот в процессе дифференциации Земли на ядро и мантию оказался в ядре: в экспериментах по растворимости азота в расплавленных базальтах и металлах с повышением давления азот все сильнее переходит в расплавленный металл, и в условиях нижней мантии его растворимость в железе в 10–20 раз выше, чем в магме. Судьба ксенона сложнее, и мы можем ее проследить благодаря тому, что несколько изотопов ксенона образуются при распаде радиоактивных изотопов других элементов.
Изотоп 129Xe образуется из йода 129I с периодом полураспада 17 млн лет. Йода на Земле примерно в 10 000 раз больше, чем ксенона, поэтому можно ожидать, что почти весь земной ксенон будет представлен изотопом 129Xe. Однако его избыток по сравнению с обычным соотношением изотопов (известным применительно к метеоритам, где отношение йод/ксенон гораздо ниже) в атмосфере Земли очень мал, а в мантии – немного больше. Это значит, что, пока 129I на Земле еще был, происходили свободный выход ксенона из мантии в атмосферу и активная потеря из атмосферы в космос. Примерно через 50 млн лет от начала Солнечной системы, когда 129I почти закончился, эти процессы прекратились. Тяжелые изотопы ксенона 132Xe, 133Xe и 136Xe образуются при делении ядер плутония 244Pu с периодом полураспада около 80 млн лет. Их содержание на Земле дает такие же оценки времени потери ксенона и свободного выхода из мантии в атмосферу. Эта датировка хорошо согласуется с гафний-вольфрамовой датировкой образования Луны и подтверждает, что гигантский удар, породивший Луну, был последним в истории Земли.
Эпизоды «океана магмы», следовавшие после каждого такого удара, приводили к массированному выходу газов из мантии в атмосферу. С переходом от «океана магмы» к тектонике плит выход газов сильно замедлился, но продолжается. Судя по содержанию калия в горных породах, 30–40 % изотопа 40Ar, возникшего при распаде калия, остается в глубинах Земли, но остальная часть вышла в атмосферу.
Мегаимпакты и атмосфера
Процесс образования Земли должен был включать несколько десятков крупных столкновений планетных зародышей. Выделение энергии при таких ударах (они еще называются мегаимпактами) приводило к расплавлению поверхности Земли до состояния «океана магмы». Эпизоды «океана магмы» после гигантских столкновений могли продолжаться по 1–2 млн лет благодаря парниковому эффекту от плотной атмосферы из СО2 и паров воды, давление которой могло в 500 раз превышать современное (Martin et al., 2006). Кроме того, в момент столкновения может происходить потеря атмосферы в космос. Сначала ударная волна разгоняет часть атмосферы до скорости выше второй космической, а потом выделяющиеся при столкновении твердых тел раскаленные пары силикатов и железа с температурой выше 10 000 °C разогревают атмосферу настолько, что ее молекулы улетают в космос за счет теплового движения.
По расчетам получается, что степень потери атмосферы очень сильно зависит от энергии столкновения. Столкновение Тейи с Землей должно было вызвать потерю более 90 % существовавшей до того атмосферы (Stewart et al., 2014). Однако падение на Землю более мелких протопланет или столкновение двух аналогов Тейи между собой приводит к потере не более 20 % атмосферы. Так что игра случая в ходе роста планет земной группы могла привести к тому, что Венера сохранила больше газов из первичной атмосферы, чем Земля, если она росла из более мелких зародышей.
Климат и парниковый эффект
Атмосфера сильнейшим образом влияет на климат планеты, тепловой баланс которой складывается из нескольких источников: излучения Солнца и выделения тепла в недрах планеты благодаря радиоактивному распаду, гравитационной дифференциации и приливному трению. Тепло уходит в космос путем инфракрасного излучения через атмосферу, поэтому прозрачность атмосферы для видимого света (основной путь энергии к планете) и инфракрасного излучения может очень сильно влиять на температуру планеты. Например, Венера получает в три раза меньше энергии на квадратный метр, чем Меркурий, однако температура ее поверхности почти на 200 °C выше – благодаря парниковому эффекту от плотной углекислотной атмосферы. Кроме того, атмосфера распределяет тепло по поверхности планеты, поэтому перепады температур между дневным и ночным полушарием Венеры не превышают долей градуса, а на безатмосферном Меркурии они составляют порядка 300 °C.
Парниковый эффект (избирательное поглощение инфракрасных лучей) обеспечивают три газа: углекислый газ, водяной пар и метан. Вклад углекислого газа прост и очевиден: чем его больше, тем сильнее поглощение инфракрасных лучей и больше парниковый эффект. Водяной пар является парниковым газом, пока он пар; но, конденсируясь в облака, он, напротив, отражает в космос свет Солнца и охлаждает планету. Баланс между облаками и прозрачным водяным паром в атмосфере зависит от множества факторов, и рассчитать его для древней Земли пока нереально. Наконец, вклад метана тоже неоднозначен. Сам по себе метан является очень активным парниковым газом. Однако продукты его фотолиза – ацетиленовые углеводороды – образуют дымку, поглощающую видимый свет. На Титане с его атмосферой из азота и 1 % метана из-за антипарникового эффекта этой дымки температура поверхности примерно на 10 °C ниже, чем была бы при чисто азотной атмосфере. Чтобы метан в атмосфере увеличивал температуру планеты, его концентрация должна быть достаточно низкой, до 0,1 %. В этом случае фотолиз идет в сторону быстро выпадающих с дождями формальдегида и синильной кислоты.
Совместное действие парникового эффекта и химического выветривания может стабилизировать климат планеты. При повышении температуры и влажности химическое выветривание ускоряется, СО2 изымается из атмосферы, приводя к ослаблению парникового эффекта и падению температуры. Оледенение блокирует доступ СО2 к горным породам, в результате СО2 накапливается в атмосфере, усиливает парниковый эффект и приводит к таянию льдов.