Последовательности ДНК, которые кодируют один и тот же белок, но при этом существенно отличаются друг от друга — бесспорное свидетельство работы отбора, допускающего мутации, которые не влияют на функции белка, и отсеивающего мутации, которые их изменяют. Таким образом, сохранение общих генов у различных видов организмов на протяжении длительного времени является решающим доказательством одного из аспектов естественного отбора — его способности, говоря словами Дарвина, уничтожать вредные изменения.
Однако эволюционирующие геномы не просто несут на себе следы естественного отбора. В летописи ДНК отражена не только история конкретного гена, но и информация о его носителях, современных и тех, что давно вымерли. Благодаря способности отбора хранить информацию, которая в противном случае должна была бы со временем исчезнуть, геномы рассказывают историю жизни на Земле. Новые данные, полученные из геномов, позволяют заглянуть в глубокое прошлое — такой возможности не давали никакие другие источники. Я завершу эту главу рассказом об эволюции того домена, к которому принадлежим мы с вами (домен эукариот), а также о том вкладе, который внесли в развитие наших предков-эукариот архей и бактерии.
Появление эукариот: союз двух непохожих родителей?
Я верю, что придет время, хотя я и не доживу до тех пор, когда у нас будет истинное генеалогическое древо для каждого царства живых организмов.
Чарльз Дарвин Из письма Т. Хаксли, 26 сентября 1857 г.
Со времен Дарвина наше понимание устройства природы значительно продвинулось вперед. Раньше всю живую природу подразделяли лишь на царство растений и царство животных. Эта двоичная система существовала со времен Аристотеля и была формально описана Карлом Линнеем в 1735 г. В 1866 году Эрнст Геккель, осуществивший замечательное исследование простейших организмов, добавил к этой классификации третье царство — царство протистов. Бактерии и грибы были включены в классификацию в качестве полноправных царств только в начале XX в.
Кроме распределения по пяти царствам признавалось и разделение более высокого порядка, основанное на фундаментальном различии клеток, обнаруженных у представителей разных царств. В 1938 году французский биолог Эдуард Шатон предложил называть представителей этих «надцарств» прокариотами и эукариотами в зависимости от присутствия или отсутствия ядра в их клетках. В эти надцарства попадали все известные формы живых организмов, но лишь до тех пор, пока Карл Воуз не начал изучать гены организмов, обнаруженных Томом Броком в Йеллоустоне.
Воуз считал, что таксономия бактерий слишком запутанна и что для определения эволюционных связей между видами требуются более объективные показатели, чем их морфология или физиология. Он обратился к изучению молекул. Как только анализ белковых последовательностей стал выявлять сходство и различия между белками, общими у разных видов, многие ученые (такие как Фрэнсис Крик, Эмиль Цукеркандль и Лайнус Полинг) признали, что можно строить генеалогическое древо живых организмов на основании последовательностей ДНК, РНК и белков. В основе этого подхода лежала очень простая идея. Участки в последовательности ДНК, РНК или белков, различающиеся у одних групп видов, но одинаковые у других, указывают на степень родства этих видов. Так же как семейное древо строится на основе степеней родства, генеалогическое древо живых организмов строится на основе генетического сходства. Однако, как я объясню далее, иногда случаются такие союзы, которые в немалой степени запутывают семейную генеалогию.
Для создания генеалогического древа бактерий Воуз использовал имеющийся в изобилии тип молекул РНК. Однако, когда он включил в свою схему термофильные метанобразующие организмы, оказалось, что «эти „бактерии“ похожи на типичные бактерии не больше, чем на эукариотическую цитоплазму». Он предположил, что существует третье надцарство, куда следовало бы отнести эти организмы, приспособленные к жизни в различных экстремальных условиях. Поскольку считается, что именно такие условия существовали на Земле в самом начале ее истории, это царство могло бы считаться первичным, или процарством, так что Воуз предложил назвать это надцарство «архебактериями». Позднее архебактерии стали называть археями, отчасти чтобы не путать их с бактериями, а «надцарства» переименовали в «домены».
Хотя разделение всех форм жизни на три домена — эукариоты, архей и бактерии — закрепилось в науке, в родственных связях между ними оказалось не так-то просто разобраться. По представлениям Дарвина каждая ветвь генеалогического древа жизни соответствовала образованию нового вида. Однако в мире микробов, с которым Дарвин не был знаком, происходят события, нарушающие стандартный способ ветвления. Микробы могут обмениваться генами, а некоторые микробы живут внутри других организмов-хозяев (так называемый эндосимбиоз). И то и другое способствует переносу генов между очень отдаленными видами организмов и нарушает «правильное» ветвление генеалогического древа. Чтобы понять связь между эукариотами, археями и бактериями, биологи должны установить происхождение множества генов, далеко не все из которых могут иметь признаки семейного сходства.
Например, в ранних исследованиях было обнаружено удивительное сходство между некоторыми молекулами архей и молекулами эукариотов. Белки, которые археи используют для упаковки ДНК в хромосомы, транскрипции ДНК и расшифровки генетической информации, настолько похожи на соответствующие белки эукариот, что высказывалось предположение о том, что эукариоты произошли от каких-то видов архей. Это сходство, в частности, присутствует в коротких специфических последовательностях («подписях») в составе белков, которые являются общими для некоторых архей и эукариот, но отсутствуют в других группах организмов. Например, в одном из бессмертных белков, участвующих в расшифровке генетической информации, есть короткая вставка из и аминокислотных остатков. В таблице 3.2 представлена последовательность этой вставки у различных эукариот и архей.
Таблица 3.2. Последовательность вставки
Присутствие этой последовательности в двух доменах и ее отсутствие в третьем логично было бы объяснить тем, что архей и эукариоты более близкие родственники друг другу, чем бактериям. Если строить древо жизни исходя из этого соображения, то получается, что общий предшественник всех трех доменов (так называемый последний общий универсальный предшественник, LUCA — от англ. last universal common ancestor) в какой-то момент дал начало двум доменам — бактериям и археям, а позднее от ветви архей отделились эукариоты. В этом случае древо жизни имело бы такой вид, как изображено на рис. 3.4.
Рис. 3.4. «Традиционная» форма древа жизни. Все домены возникают как ветви на стволе дерева. Рисунок Джейми Кэрролл.