Книга Твиты о Вселенной. Микроблоги о макропроблемах, страница 45. Автор книги Маркус Чаун, Говерт Шиллинг

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Твиты о Вселенной. Микроблоги о макропроблемах»

Cтраница 45

«Черенковское излучение» (подобно голубому свечению, замеченному в ядерных «водоемах») фиксируется световыми детектора-ми, которые расположены внутри «гигантской кастрюли для запекания фасоли».


Нейтринные телескопы должны быть глубоко под землей для того, чтобы оградить их от «мюонов» из космических лучей, которые маскируются под след нейтрино.


Super-Kamiokande «сфотографировал» Солнце — ночью, глядя на Солнце не вверх, а вниз.


Нейтринные эксперименты в Японии и США зафиксировали нейтрино от Сверхновой 1987А — первое нейтрино, из когда-либо обнаруженных за пределами Солнечной системы.


Существует 3 типа, или «аромата», нейтрино. В нейтринной обсерватории Садбери (Sudbury Neutrino Observatory, Канада), подтвердилось, что на пути от Солнца нейтрино трансформируется из одного типа в другой.


Нейтринные «осцилляции» объяснили озадачивающую нехватку частиц, зарегистрированную новаторским детектором Рея Дэвиса, использовавшим «высоко очищенную жидкость». Дэвис получил Нобелевскую премию.


Новейший самый чувствительный нейтринный телескоп IceCube (Ледяной куб) использует в качестве детектора 1 км3 антарктического льда. Строительство завершено в начале 2011.


Большой интерес к нейтринным телескопам: мы знаем, как выглядит видимая Вселенная, но пока еще не знаем, как выглядит нейтринная Вселенная.

Наблюдаем Вселенную
131. Что такое свет?

Исаак Ньютон (1643–1727) считал, что свет состоит из крошечных частиц, движущихся прямолинейно. Теория описана в Оптике (Opticks), 1704.


Христиан Гюйгенс (1629–1695) не согласился. Он считал, что свет — это волна, как звук. Теория описана в Трактате о Свете (Treatise on Light), 1690.


В 1801 в Лондоне Томас Юнг продемонстрировал два световых луча, которые могут усилить или погасить друг друга (интерференция) — характерное свойство волны.


В XIX в. Майкл Фарадей и Джеймс Клерк Максвелл описали свет как электромагнитную волну, распространяющуюся в пространстве со скоростью в 300 000 км/с.


Несмотря на явную волновую природу света, Альберт Эйнштейн и Роберт Милликен высказали гипотезу, что свет состоит из сгустков, или квантов энергии (фотонов).


В квантовой физике свет одновременно имеет свойства и частицы, и волны. Энергия фотона связана с его длиной волны; фотоны интерферируют.


Длина волны видимого света лежит в диапазоне от 380 нм (фиолетовый, высокая энергия) до 780 нм (красный, низкая энергия). Солнечный свет содержит все цвета.


Белый солнечный свет может разлагаться на составляющие цвета (спектр), преломляясь капельками воды (радуга) или призмой.


Разреженный светящийся газ излучает только характеристические длины волн. Натриевые лампы: оранжевый свет. Космические облака горячего водорода: розоватый свет.


Газы в атмосфере Солнца поглощают определенные длины волн. Результирующие темные фраунгоферовы линии в спектре несут информацию о составе.


Поляризация света дает информацию о магнитных полях. Красный или синий сдвиги спектральных линий дают информацию о движении частиц.


Распределение энергии света (голубой/красный) говорит вам о температуре излучающего тела. Все обо всем, свет содержит в себе массу информации.


Видимый свет — это только малая часть полного электромагнитного спектра. Астрономы также используют приборы для исследования других видов излучения.

132. Что такое скорость света и почему она так важна?

Скорость света (с) играет роль бесконечной скорости во Вселенной. Точно так же, как недосягаема бесконечность, скорость света недостижима для материального объекта.


Почему с недостижима? Энергия связана с массой. Если толкать тело быстрее, растет не только его энергия движения, но и масса. При приближении к с масса возрастает многократно до бесконечности.


Если что-то движется бесконечно быстро, то ваша скорость по сравнению с этим пренебрежимо мала. Таким образом, это что-то представляется бесконечно быстрым, независимо от того, какова ваша скорость.


Аналогично, вы всегда получите при измерении одно и то же значение для скорости света, независимо от того, насколько быстро вы движетесь относительно источника света.


Даже если кто-то приближается к вам со скоростью, равной половине скорости света, и светит фонариком вам в глаза, свет достигает вас не со скоростью 1,5 с, а все с той же скоростью с.


Так что, поскольку каждый получает при измерении одно и то же значение для скорости света (отношение расстояние/время), оценки расстояния и времени, сделанные каждым в отдельности, будут различаться.


В какой степени интервалы времени и пространства претерпевают изменения для кого-то движущегося полностью зависит от того, как быстро он движется по отношению к вам.


Движущиеся часы идут медленнее, движущиеся линейки сжимаются. Проходящий человек движется в замедленном темпе и сжимается, как блин, в направлении движения.


Но «замедление времени» и «лоренцевское сокращение длины» заметны, только если кто-то движется по отношению к вам с немалой долей скорости света.


Свет движется со скоростью (300 000 км/с), в миллион раз большей, чем пассажирский самолет, поэтому эффекты специальной теории относительности незаметны в повседневной жизни.


Если отправиться к звездам со скоростью, близкой к скорости света, то время будет течь так медленно, что при возвращении выяснится, что уже прошли миллионы лет.

133. Что слушают радиотелескопы?

Радиоволны это электромагнитные волны с длиной волны более 1 см. Они представляют собой низкоэнергетическую часть электромагнитного спектра.


В 1930 Карл Янский, радиоинженер из Лаборатории Белл Телефон, обнаружил радиоволны от Млечного Пути. Так родилась радиоастрономия.


Семь лет спустя Грот Ребер построил управляемую параболическую радиоантенну на своем заднем дворе в США. Направив ее на небо, он обнаружил дискретные источники радиоволн.


Преимущество радиоастрономии: космические радиоволны могут быть зафиксированы при ярком дневном свете и даже в дождь или снежную бурю — нет необходимости в темном небе.


Во время Второй мировой войны голландский астроном Хендрик ван де Хюльст показал, что атомарный холодный нейтральный водород должен давать слабое радиоизлучение на длине волны 21 см.


21-сантиметровое излучение впервые обнаружили в марте 1951 Харольд Юэн и Эдвард Перселл в Гарварде, за ними сразу последовали голландцы в мае 1951.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация