Книга Здоровье по Дарвину. Почему мы болеем и как это связано с эволюцией, страница 46. Автор книги Джереми Тейлор

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Здоровье по Дарвину. Почему мы болеем и как это связано с эволюцией»

Cтраница 46

Специалист в такой замечательной области науки, как молекулярная палеоархеология, Давиде Пизани из Ирландского национального университета вместе с коллегами из Бристольского университета сосредоточился на семействе светочувствительных пигментов, находящихся в клетках фоторецепторов и превращающих фотоны света в электрохимические сигналы. Все вместе они известны как опсины. В поисках предка всех существующих ныне опсинов Пизани и его коллеги использовали всю доступную геномную информацию по соответствующим группам животных и построили таксономическое дерево опсинов, которое сначала привело их к общему монофилетическому таксону Neuralia, включающему стрекающих кишечнополостных (губок и медуз), гребневиков (гребневиков, морских крыжовников, морские орехи и венерин пояс) и билатерий (предков всех остальных животных на Земле), а затем к странной группе самых примитивных многоклеточных животных, называемых пластинчатыми (Placozoa). Именно здесь, как предположили исследователи, молекула-предшественник всех опсинов прошла дупликацию генов, дав рождение древнему гену опсина и его близкому родственнику гену мелатонина, вещества, которое в настоящее время участвует в регулировании циркадных ритмов. Далее этот опсин, который предположительно был «слепым», за короткий период времени, всего 11 миллионов лет, претерпел молниеносную эволюцию, превратившись в опсины, которые могли реагировать на свет. Работа Пизани и его коллег датирует происхождение гена опсина примерно 700 миллионами лет назад и закладывает фундамент для дальнейшего углубления наших знаний об эволюции семейства генов опсина вплоть до позвоночных, а также об эволюции цветового зрения.

Когда окружающая среда предоставляет сходные условия отбора в отношении остроты зрения – например, повышая шансы на успех для хищников или, наоборот, для их жертв, – органы зрения животных, имеющие разное эволюционное происхождение, могут развиваться в одном направлении и приобретать значительное сходство. Глаза позвоночных и головоногих (кальмаров и осьминогов) – классический пример того, как конвергентная эволюция привела к развитию у них чрезвычайно похожих глаз камерного типа. Глаза обоих типов имеют чашеподобную камеру, сложную сетчатку с высокой плотностью фоторецепторов и хрусталик. Между тем с точки зрения эволюции головоногие очень далеки от позвоночных.

Парадоксально, но этот уникальный пример конвергентной эволюции стал очередным поводом для яростных баталий между воюющими армиями креационистов и эволюционистов. Креационисты, как мы уже говорили, опираются на все тот же аргумент, впервые выдвинутый Уильямом Пейли, что глаз со всеми его сложными, взаимосвязанными составляющими не мог возникнуть в результате ступенчатой эволюции. Эволюционисты пытаются опровергнуть этот аргумент, используя обидное сравнение между эстетически совершенным дизайном глаза кальмара и довольно нелепой конструкцией глаза позвоночных, а значит, и человеческого глаза.

Главное отличие, на котором акцентируют внимание эволюционисты, касается ориентации фоторецепторов в сетчатке, что является неизбежным следствием различного эмбриологического происхождения глаз у позвоночных и головоногих моллюсков. У позвоночных сетчатка развивается из центральной нервной системы – из выпячиваний, или пузырьков, на поверхности нервной трубки, из которой в дальнейшем образуется передний отдел головного мозга. Эти глазные пузырьки выпячиваются и прикасаются к наружной стенке эмбриона, стимулируя формирование хрусталика. Затем они «складываются внутрь» вместе с частью наружной стенки, образуя глазной бокал. Этот процесс приводит к образованию так называемой инвертированной или перевернутой сетчатки, где фоторецепторы повернуты в обратную сторону от входящего света, а их синаптические окончания, идущие к зрительному нерву, направлены внутрь глаза, в сторону хрусталика. У беспозвоночных весь глазной аппарат развивается из кожи посредством образования серии сложных складок тканей, в результате чего фоторецепторы оказываются обращенными к свету, а их отростки, идущие к зрительному нерву и головному мозгу, – обращены назад, к задней части глаза. Таким образом входящему свету не приходится преодолевать препятствия в виде вышележащих клеточных слоев и переплетений нервных волокон, ведущих в головной мозг. Более того, поскольку у осьминогов и кальмаров нейроны идут от задней части фоторецепторов к зрительному нерву, они не пролегают по внутренней поверхности сетчатки, прежде чем пройти через оболочку глаза и погрузиться в головной мозг. Это означает, что в глазах осьминогов и кальмаров нет слепого пятна. Такая сетчатка называется неинвертированной или нормальной, и на первый взгляд может показаться, что кальмаров и осьминогов эволюция одарила более совершенной и продуманной конструкцией глаза, чем позвоночных с их «вывернутой наизнанку» сетчаткой со слепым пятном в нагрузку.

Таким образом, в споре с креационистами даже самые уважаемые профессора эволюционной биологии зачастую попадают в ловушку. Чтобы убедить нас в том, что «дизайн» человеческого тела – дело рук эволюции, а не Бога, они часто прибегают к так называемому аргументу о «плохом дизайне». Этот аргумент традиционно используется для доказательства эволюционного, а не божественного происхождения человеческого глаза, и в качестве главного «дефекта дизайна» неизменно указывается перевернутая сетчатка. Вот что пишет об этом инженерном фиаско Ричард Докинз в своей книге «Слепой часовщик»:

Любой инженер естественно решил бы, что фотоэлементы нужно располагать на стороне падающего света, а провода от них отводить с обратной стороны, обращенной к мозгу. Он посмеялся бы над предложением сделать наоборот – чтобы фотоэлементы располагались ниже слоя проводов, которые бы их заслоняли. Но именно так сделано в сетчатках всех позвоночных! Каждая светочувствительная клетка располагается в глубине сетчатки, а выходящий из нее отросток идет туда, откуда падает свет. Проводу приходится путешествовать по поверхности сетчатки к некоей точке, где он проникает через отверстие в ней (называемое «слепым пятном»), чтобы присоединиться к зрительному нерву. Это означает, что свет, вместо того чтобы свободно проходить к светочувствительным клеткам, должен продираться сквозь лес проводов, страдая по крайней мере от какого-то ослабления и искажения (фактически искажения невелики, но тем не менее это в принципе нечто, что оскорбило бы любого аккуратного инженера!).

Один из отцов эволюционной медицины Рэндольф Несс использует очень похожий аргумент. В своей беседе с Докинзом, видеозапись которой можно увидеть на YouTube, он восклицает: «Только представьте себе, что разработчик камеры Nikon или Pentax проложил провода между объективом и пленкой – т. е. так, как они расположены в нашем глазу. И мало того, сделал бы в центре слепое пятно, где вообще отсутствует всякое изображение!» Именно такое перевернутое строение, утверждает Несс, делает нас подверженными отслоению сетчатки. На что Докинз ему отвечает: «Известный немецкий ученый Герман фон Гельмгольц как-то сказал, что, если бы к нему пришел инженер и предложил оптическое устройство с конструкцией как у человеческого глаза, он бы прогнал его прочь!»

Согласно Нессу, человеческий глаз значительно уступает глазу кальмара или осьминога: «Все головоногие моллюски имеют глаза с правильной конструкцией. Благодаря тому, что все сосуды и нервы пролегают по задней стороне глаза, у них не бывает отслоения сетчатки. У них нет проблемы со слепым пятном, поэтому им не нужно так сильно двигать глазами, как нам, чтобы охватить взглядом все поле зрения. Этот дизайн по всем параметрам превосходит наш!»

Вход
Поиск по сайту
Ищем:
Календарь
Навигация