Книга Неандерталец. В поисках исчезнувших геномов, страница 16. Автор книги Сванте Пэабо

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Неандерталец. В поисках исчезнувших геномов»

Cтраница 16

Свою текущую научную задачу я видел в том, чтобы выработать систематический подход и надежные методики секвенирования древней ДНК. Еще в Беркли я начал понимать, насколько серьезна проблема внесения инородной современной ДНК в материалы с ископаемой ДНК, особенно когда применяется ПЦР. С использованием новых секвенаторов и термоустойчивой ДНК-полимеразы процесс могли запустить всего несколько молекул ДНК или даже одна-единственная молекула. Если, к примеру, музейный экспонат растерял все свои собственные древние ДНК, зато приобрел за время хранения несколько фрагментов ДНК музейного куратора, то мы в результате вместо древнеегипетского жреца изучали бы музейного куратора. С вымершими животными в этом отношении было проще, меньше возможности перепутать нуклеотидные последовательности. На самом деле, именно работая с животными, я осознал, насколько серьезна проблема внесения инородной ДНК: иногда, умножая мтДНК из остатков древних животных, я получал человеческую нуклеотидную последовательность. В 1989 году, еще до отъезда в Мюнхен, я опубликовал статью в соавторстве с Аланом Уилсоном и Расселом Хигучи (тем, который начал работы с кваггой). Статья ввела в обиход “критерии аутентичности”, как мы их назвали, то есть ряд процедур, которые необходимо выполнить, чтобы подтвердить “древность” прочтенной ДНК [15] . Мы предложили параллельно с исследуемым материалом каждый раз проводить реакцию с “чистым экстрактом”, то есть использовать все те же реагенты, но без добавления ископаемого образца. Таким образом выявлялись фрагменты ДНК, случайно попавшие в сами реагенты. Кроме того, и процесс выделения ДНК, и ПЦР предлагалось провести несколько раз – требовалось, чтобы искомая цепочка ДНК появилась хотя бы дважды. И наконец, я пришел к окончательному заключению, что древние фрагменты ДНК вряд ли бывают длиннее 150 нуклеотидов. В общем, вывод из всего этого напрашивался неутешительный: все прошлые эксперименты, притязающие на выделение древних ДНК, особенно до изобретения ПЦР, были безнадежно наивными.

Да и мои собственные результаты, те найденные ДНК-последовательности мумий, опубликованные в 1985 году, задним числом выглядели подозрительно длинными: ведь ДНК всегда разбивается на короткие фрагменты. Как показали другие исследователи, я выделил гены антигенов, трансплантационных белков [16] . Я мог бы назвать две возможные причины их появления в составленной тогда цепочке (а мы как раз их и изучали в тот момент в лаборатории в Упсале): либо я пользовался реагентами, предназначенными для антигенов, либо фрагмент ДНК случайно попал в исследуемый материал. Учитывая длину полученной цепочки, я склоняюсь ко второму варианту. Я утешал себя мыслью, что вот таким образом я поучаствовал в научном прогрессе: методики устаревают, на их место приходят новые, лучшие. И я рад, что к этой части прогресса я буквально приложил собственные руки. К тому же с неожиданной стороны пришла помощь. В 1993 году Томас Линдаль опубликовал короткие комментарии в Nature , где предлагал критерии, схожие с опубликованными нами в 1989– м [17]. Соблюдать их он считал необходимым, если дело касалось древних ДНК [18]. Хорошо, что такой уважаемый ученый из другой области подтвердил наши выводы – я уже тогда обеспокоился тем, кто приходит в область исследований древней ДНК. Громкое освещение в прессе и общественное внимание привлекали ученых без достаточных знаний по биохимии и молекулярной биологии; они просто отправляли на ПЦР любые древние образцы, оказавшиеся под рукой. Мы в лаборатории называли такой подход “нелицензионной молекулярной биологией”.

Из всех возможных лабораторных проектов сам я склонялся к изучению истории человека методами молекулярной биологии. Это замечательно интересная область знаний, хотя и пестрящая домыслами и предубеждениями, взятыми напрокат из отживших идей. Мне хотелось привнести стройность в науку о человеческой истории и сделать это на основе изучения ДНК древних людей. Для этого можно было бы начать с очевидного: в качестве исходного материала взять сохранные останки человека бронзового века из торфяников Северной Германии и Дании. Но чем больше я про них читал, тем лучше понимал, что сохранились остатки благодаря высокой кислотности среды, дававшей дубильный эффект. Кислая среда ведет к потере нуклеотидов и разрывам нуклеотидных последовательностей, что, по понятным причинам, сохранению ДНК никак не способствует. Но, что еще хуже, сам факт, что человеческие ДНК находят при лабораторных исследованиях даже в остатках животных, показывает, насколько непросто работать с остатками человеческими.

Обдумав все это, мы начали с образцов вымерших животных, таких как сибирский мамонт. Мы запустили планомерные эксперименты с контролями. Например, мои студенты Олива Хандт и Матиас Хёсс проводили опыты с использованием праймеров, специфичных для человеческой мтДНК. Я пришел в смятение, когда они уверенно выделили человеческую ДНК не только из животных образцов, но и из контрольных вытяжек, вообще без добавок. Мы повторили эксперимент с новыми реагентами, “свежедоставленными” в лабораторию, но результат был тот же. И еще раз, и еще, и еще, месяц за месяцем – человеческая ДНК присутствовала везде и всюду. Меня охватило отчаяние. Чему верить? И как вообще доверять результатам, если только они полностью не совпадут с ожидаемыми (например, у сумчатого волка ДНК-последовательность соответствует сумчатым)? А если доверять только ожидаемым результатам, то зачем вообще работать в этой области? Мы же никогда не откроем ничего неожиданного, того, ради чего и существуют настоящая наука и настоящий эксперимент.

Каждый день я уходил домой разочарованный и измотанный постоянными провалами. Но постепенно я стал понимать, насколько легкомысленно относился к проблеме занесенных загрязнений. Очевидный логический вывод, следующий из чрезвычайной чувствительности ПЦР, мне в голову почему-то не пришел. И в Беркли, и в первые месяцы в Мюнхене мы экстрагировали ДНК из музейных образцов, работая на общих лабораторных столах, где в обращении было огромное число ДНК и человека, и разных других исследуемых организмов. Даже если мельчайшее количество современной ДНК попадет в раствор, содержащий экстракт ископаемой ДНК, современная ДНК возьмет верх над древним материалом. Такое запросто могло произойти, даже если мы всего лишь забыли поменять пластиковую насадку на пипетке.

Стало понятно, что нам придется полностью отделить – причем отделить физически – работы с древними ДНК от всех остальных лабораторных проектов. В особенности стоило обратить внимание на изоляцию ПЦР, при которой получались триллионы молекул. Нам нужна была лаборатория, которая занималась бы исключительно выделением и амплификацией древнего материала. На нашем этаже нашлась маленькая комнатка без окон, мы ее полностью вычистили и покрасили, затем задумались, как бы избавиться от тех ДНК, что неминуемо проникли в лабораторию с новыми столами и инструментами. Меры мы приняли самые жесткие. Абсолютно все в лаборатории было вымыто хлоркой, которая окисляет ДНК. К потолку приделали ультрафиолетовые лампы, их включали на ночь, так как ультрафиолет разрушает молекулы ДНК. Мы купили новые реагенты – и первая в мире “чистая” лаборатория для исследования древнего материала заработала (рис. 4.1). И все сразу поменялось. Наши контрольные растворы перестали выдавать ДНК, как им и полагалось. А из рабочих растворов, как и полагалось, определялась ДНК. Но мало-помалу, спустя несколько месяцев, в контроле опять стали появляться ДНК. Я рвал и метал. Ну что опять?! Мы выбросили все реагенты и закупили новые.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация