В целом мы обнаруживаем, что объединение информации о вездесущности продукта с данными о промышленном разнообразии экспортирующих его стран позволяет быстро идентифицировать продукты, которые являются более сложными по сравнению с другими.
[138] Суть в том, что существует четкая тенденция, говорящая, что наиболее сложные продукты, как правило, производятся несколькими многоотраслевыми странами, в то время как более простые продукты обычно производятся большинством стран, в том числе теми, которые производят лишь несколько продуктов. Это согласуется с идеей о том, что отрасли промышленности, которые требуют меньшего объема знаний и ноу-хау, присутствуют повсюду. Как мы увидим, именно эти небольшие фрагменты знаний и ноу-хау, скорее всего, будут распространены по всему миру.
Таким образом, первой нитью в веревке доказательств существования связи между структурами отраслей промышленности и наличием знаний и ноу-хау является способность концепции челобайта объяснить вездесущность продуктов и вложенность матриц, отражающих расположение отраслей промышленности. Концепция челобайта предполагает, что знания и ноу-хау, необходимые для производства более сложных продуктов, должны накапливаться в более крупных и более сложных сетях, а следовательно, предполагает наличие обратной связи между разнообразием представленных в конкретном регионе отраслей и их вездесущностью. Тем не менее, как остроумно отметил Роберт Патнэм в своей книге Bowling Alone, веревка доказательств не может состоять только из одной нити. Таким образом, следующей нитью нашей веревки доказательств будет использование концепции челобайта для объяснения не только вложенности матриц, отражающих расположение отраслей промышленности, но и динамики этих матриц, то есть путей диверсификации стран и изменений в географическом распределении отраслей промышленности.
Эволюцию промышленного профиля страны можно представить в виде пазла. Действительно, перемещение сложной отрасли подобно попытке переместить пазл с одного стола на другой. Чем больше в пазле кусочков, тем труднее будет переместить его, поскольку, если мы не можем переместить все кусочки одновременно, пазл развалится. Таким образом, проще «переместить» несколько кусочков пазла на другой стол, на котором уже присутствуют другие кусочки того же самого уже собранного пазла. Перемещение сетей представляет такие же проблемы. Продукты, для производства которых требуется больший объем знаний и ноу-хау, подобны более крупным пазлам и, следовательно, будут создаваться в немногочисленных регионах, поскольку, чем больше кусочков вам нужно, тем больше вероятность того, что какой-нибудь кусочек будет отсутствовать. Кроме того, аналогия с пазлом говорит нам о том, что отрасли промышленности имеют больше шансов на успех там, где уже есть многие из необходимых для этой отрасли частей. Эту разницу в успешности можно рассматривать в качестве предвзятости, которая благоприятствует возникновению отраслей промышленности в местах или в состоящих из людей сетях, которые уже накопили большую часть знаний и ноу-хау, необходимых для этой отрасли, поскольку они уже развили одну или несколько смежных отраслей. В бизнес-школах и в кругах профессионалов по региональному развитию этот эффект известен как связанная диверсификация, что является техническим названием для идеи о том, что регионы, производящие шторы, уже адаптированы к производству скатертей, но не кофе-машин.
[139]
Сходства в знаниях и ноу-хау, необходимых для производства продуктов или воплощенных в отраслях, может усилить вложенность матриц, отражающих расположение отраслей промышленности, рассмотренных нами ранее, поскольку они подразумевают то, что продукты, для производства которых необходим большой объем знаний и ноу-хау, требуют наличия челобайт информации, уже воплощенных в населении многоотраслевых регионов. Тем не менее вложенность не может рассказать нам о схожести отраслей, поскольку сходства в знании и ноу-хау, необходимых для производства пары продуктов, плохо отражены в степени вездесущности продукта. Возвращаясь к нашей биологической аналогии, мы можем сказать, что зебра и крокодил похожи между собой в плане общей сложности, однако зебра может эволюционировать в лошадь легче, чем крокодил, просто потому, что гены зебры уже отвечают за многие особенности, свойственные лошади (длинные ноги, грива, пищеварительная система, оптимизированная для усвоения травы и т. д.).
[140] Таким образом, для определения сходства между двумя продуктами нам нужны критерии, выходящие за рамки их вездесущности. В данном случае можно использовать либо данные о местоположении отраслей, либо данные о профессиях, востребованных в обеих отраслях. Мы можем использовать эти данные, чтобы проверить, склонны ли новые отрасли развиваться в направлении тех отраслей, которые уже присутствуют в конкретном регионе.
Один из способов проверки предсказательной силы отраслевого сходства заключается в том, чтобы ввести понятие пространства продукта: сети, объединяющей похожие продукты. В глобальном масштабе мы можем оценить эту схожесть, посмотрев на то, какие продукты, скорее всего, будут экспортироваться вместе. Предполагается, что экспорт пары продуктов в тандеме отражает сходство между ними (то есть если производство рубашек сходно с производством блузок, то страны, экспортирующие рубашки, с большей вероятностью будут экспортировать блузки). В случае с экономикой конкретной страны, когда доступны данные о профессиях, востребованных той или иной отраслью, мы можем объединить отрасли, которым, как правило, требуется аналогичные профессии (приняв их в качестве показателя того, какие конкретно знания и ноу-хау требуются для той или иной отрасли).
[141]