Книга Экономика символического обмена, страница 61. Автор книги Александр Долгин

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Экономика символического обмена»

Cтраница 61

Наряду с клиент-клиентскими системами применяется коллаборативная фильтрация второго типа – модельного [335]. В этой схеме с помощью некоего индекса сходства пользователей объединяют в кластеры. Покупки и оценки, данные потребителями из одного сегмента, используются для вычисления рекомендаций. По утверждению Г. Линдена и его соавторов, кластерные модели легче масштабируются (т. е. они лучше приспособлены к работе с крупными базами данных) в сравнении с поклиентской коллаборативной фильтрацией, так как сверяют профиль пользователя с относительно небольшим количеством сегментов, а не с целой пользовательской базой [336]. Сложный и дорогой кластерный подсчет ведется в оффлайновом режиме, что разгружает систему. Но качество рекомендаций при этом снижается, и вот почему. Кластерная модель группирует пользователей в сегмент, сравнивает конкретного пользователя с этим сегментом и выдает всем членам сегмента общие рекомендации. Так как пользователи, объединенные в кластер, не обладают идеальным сходством, рекомендации тоже не идеальны. Их качество можно повысить, разбивая пользователей на высокооднородные подгруппы, но тогда их будет много, и анализ связи пользователь-сегмент обойдется так же дорого, как и поиск сходных потребителей методом субъект-субъектной (поклиентской) коллаборативной фильтрации [337].

Работа по совершенствованию коллаборативной фильтрации полным ходом ведется во всем мире. Известны попытки внедрения статистической схемы [338], а также более сложных вероятностных методов [339]. Объединение анамнестического и модельного принципов дает лучшие результаты, чем каждый из них в отдельности.

2.7.3.1. Проблемы и недостатки

Коллаборативные рекомендации по целому ряду параметров превосходят контентные. В частности, они могут работать с любыми продуктами, даже c теми, которые вообще пока не известны данному потребителю. Технология может использоваться и для экспертизы самого эксперта [340]. (Если профессиональный критик включается в орбиту рекомендательного сервиса, важно знать, в какой области он специализируется и сколь авторитетен.)

Главное достоинство коллаборативной фильтрации состоит в том, что рекомендации персонифицированы. При этом сервис не просто использует повседневную потребительскую активность клиентов, а стимулирует их анализировать свои поступки. Создатели рекомендательных систем для торговли по вполне понятным причинам стараются не утруждать потребителя и свести его рефлексию к минимуму. Но несомненно, что для самого покупателя осмысление выбора – полезное занятие. В частности, культурно-потребительская активность может привести к формированию сообществ по интересам, и это бесконечно позитивно [341] – при условии, что реальное (офф-лайн) знакомство людей с их «вкусовыми» соседями не будет противоречить этике и принципу невмешательства в частную жизнь [342].

Но в коллаборативных сервисах имеются и свои ограничения. К их числу относится проблема нового пользователя. Чтобы дать ему точные рекомендации, системе прежде надлежит выяснить его предпочтения. Это препятствие обходят, используя гибридный метод, совмещающий возможности контентного и коллаборативного принципов [343]. Совсем недавно появились методики построения потребительского профиля, в которых используется автоматическая обработка текстов (data-mining), анализ сетевого поведения клиента и т. д. Они позволяют учесть интересы и предпочтения пользователей, не обременяя их лишними вопросами, и тем самым насытить как их собственные профили, так и профили объектов. Эти технологии позволяют отчасти снять еще одну проблему рекомендательных систем – назойливость. Большин­ство рекомендательных сервисов предполагают пользовательскую активность: MovieLens, например, первым делом просит новичков проставить оценки двум десяткам фильмов [344].. Для точного расчета необходимы оценки большого количества уже известных продуктов. Эти сведения стараются извлечь косвенными методами [345]. Например, анализируют время, ушедшее на чтение статьи. Но косвенные данные неточны и не заменяют полностью прямых оценок пользователя. Поэтому проблема снижения навязчивости рекомендательных систем при сохранении высокого качества их работы стоит довольно остро.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация