• История данных по объемам торговли (как для базовых активов, так и для опционов) и открытому интересу (для опционов).
• История дивидендных выплат, сплитов и переименований тиккеров базовых активов.
• История квартальных отчетов. Необходимо помнить, что цель бэктестинга – смоделировать ситуацию принятия решения в прошлом, не заглядывая в относительное к этому прошлому будущее. Достаточно просто получить хронологию уже состоявшихся квартальных отчетов, предоставляемую многими бесплатными сервисами. Однако такая информация не должна быть использована в бэктестинге, поскольку может стать причиной принципиальных ошибок. Дело в том, что в реальной торговле принятие решения может опираться только на предполагаемые даты событий – причем событий, предполагаемых только на основании имеющейся в тот момент информации. Рынок может не знать о точной дате будущего отчета, и это радикально отразится на цене опционов (например, подразумеваемая волатильность будет ниже по сравнению с ситуацией точно известной близкой даты отчета). Либо ситуация может быть обратной – точная дата отчета известна, но в назначенный день отчет не публикуется. Реакция рынка в таком случае зависит от причины задержки отчета. В обоих случаях в процессе бэктестинга будет принято решение, которое было бы невозможно в реальности. Чтобы избежать подобного искажения результатов, необходимо хранить для каждого дня прошлого предполагаемые даты квартальных отчетов, доступные в открытом доступе в этот день. Эти данные можно накапливать, ежедневно автоматически сканируя популярные сайты типа MarketWatch.com, Earnings.com, Finance.Yahoo.com и другие.
• История нерегулярных корпоративных событий: слияния/поглощения, банкротства, судебные решения, заседания комиссий с одобрением или запрещением продукции. Информация подобного типа существенно осложняет бэктестинг. Все перечисленные события сильно влияют на подразумеваемую волатильность и, следовательно, на цену опционов. Однако информация о них становится достоверной только после фактического наступления события. В бэктестинге же необходимо учитывать только предположения и ожидания, которыми участники рынка могли руководствоваться в конкретный день до наступления события. Сбор, хранение и использование такой информации в стратегиях – крайне непростая задача. При невозможности правильно оценить информацию, доступную участникам рынка в заданный момент времени (до наступления события), следует отказываться от сделок в системе бэктестинга. Это делается путем применения специальных фильтров (описанных ниже).
• История фундаментальных показателей. Фундаментальные финансовые показатели, такие как P/E, PEG, ROE, EPS и многие другие «мультипликаторы», получаемые из корпоративной отчетности и экспертных оценок, являются основой фундаментального анализа. В настоящее время использование фундаментальных показателей при построении опционных торговых стратегий не имеет широкого распространения. Однако разработка подобных стратегий представляется нам весьма перспективным направлением развития (особенно в сочетании с использованием элементов технического анализа). Основная задача состоит в накоплении данных, публикуемых в квартальных отчетах, и параллельное взаимосвязанное накопление для этих же данных их прогнозных значений (существовавших до публикации отчета).
Многие поставщики данных и информационных сервисов сопровождают биржевые данные о ценах и объемах целым спектром расчетных показателей – различными вариантами волатильностей (исторической и подразумеваемой), «греками», поверхностями волатильности и т. п. Эту информацию можно также поддерживать в исторической базе. С другой стороны, разработчик торговой системы может использовать свои модели и алгоритмы расчета данных показателей.
5.1.3. Оперативный доступ к данным
Данные имеют весьма внушительный объем. Доступ к ним требует заметных временных затрат. Имитация торговли подразумевает последовательную обработку данных за несколько сотен и даже тысяч торговых дней. Многочисленные исторические симуляции необходимо проводить не только при бэктестинге, но и при оптимизации стратегий, статистическом исследовании параметров или элементов алгоритмов.
Для бэктестинга опционных стратегий необходимо оперировать одновременно большим количеством торговых инструментов. Причем в качестве инструмента может выступать как отдельный опцион, так и их комбинация (можно создавать практически неограниченное количество опционных комбинаций, играющих роль самостоятельных инструментов). Поэтому, помимо стандартного движения по истории, то есть во времени, необходимо обеспечить быструю навигацию по структуре опционных серий. В частности, алгоритм тестируемой стратегии может требовать создания на каждый день прогонки следующих наборов данных:
• опцион заданного базового актива заданного типа (пут или колл) с заданным страйком и датой экспирации;
• все страйки и даты экспирации для данного базового актива;
• все активно торгуемые опционы (со среднедневным объемом торговли выше заданной пороговой величины) для заданного базового актива;
• опционы, имеющие страйки «около денег», «вне денег» или «в деньгах» для заданной даты экспирации;
• опционы с заданным страйком, имеющие даты экспирации в пределах заданного интервала времени от текущей даты;
• многие другие более сложные наборы.
Необходимо также оперативно определять истинность или ложность высказываний типа: предполагается ли для данной компании корпоративный отчет между текущим днем и датой экспирации?
Для решения таких многомерных задач, требующих навигации как во времени, так и по структуре комбинаций, необходимо обеспечить такую скорость доступа к данным, которую позволяет только объект, содержащий в оперативной памяти все данные, необходимые во время прогонки стратегии. Это значит, что, помимо большой базы данных, предназначенной для хранения и накопления исторических данных, необходима оперативная история – встроенный в программный код системы бэктестинга объект, осуществляющий быстрый доступ к определенным данным на каждом шаге прогонки.
На практике оперативная история представляет собой подгружаемый при запуске системы бэктестинга объект, содержащий всю необходимую историю, которая может потребоваться для конкретной стратегии. Это существенно снижает проблему объемности данных и скорости обращения к ним. Например, возможно строить стратегии, использующие только индексы или ETF в качестве базовых активов (при этом отпадает потребность в использовании истории предполагаемых квартальных отчетов). Другой пример – стратегия, торгующая опционами только на акции из состава S&P 500. Также можно ограничить спектр серий двумя ближайшими датами экспирации и страйками, отстоящими не далее 10 % от текущей цены базовых активов. Вместе с тем, даже несмотря на подобные ограничения, для размещения оперативной истории в оперативной памяти приходится применять алгоритмы сжатия данных.
5.1.4. Рекуррентные вычисления
В традиционном бэктестинге стратегий, ориентированных на торговлю акциями или фьючерсами, реализуется доступ к историческим значениям различных функций – индикаторов технического и фундаментального анализа. В бэктестинге опционных стратегий сюда добавляются еще и другие специфические расчетные величины. Стандартными для многих систем бэктестинга являются расчетные значения подразумеваемой и исторической волатильности, «греки», относящиеся ко всему спектру инструментов и всему горизонту истории. Объемы исторических данных не всегда позволяют хранить эти показатели рассчитанными заранее. Поэтому приходится каждый раз вычислять их значения по мере необходимости. Это приводит к возникновению другой проблемы, выражающейся в непомерно больших затратах времени и вычислительных ресурсов. Для решения этой проблемы требуется применение специальных технологий ускорения и упрощения текущих вычислительных операций. Одной из таких технологий являются рекуррентные вычисления, когда значение некой функции вычисляется на основе ее предыдущего значения.