Книга Опционы. Разработка, оптимизация и тестирование торговых стратегий, страница 54. Автор книги Сергей Израйлевич, Вадим Цудикман

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Опционы. Разработка, оптимизация и тестирование торговых стратегий»

Cтраница 54

Помимо перечисленных проблем, существуют особенности, связанные с периодом обращения опционов. Поскольку в отличие от многих активов срок жизни любого опционного контракта ограничен датой экспирации, исторический временной ряд, необходимый для анализа определенного опциона, достаточно короток. Кроме того, глубина прогноза также ограничена. Если для обычных активов ожидаемая доходность обычно оценивается на годовом горизонте, то для опционов горизонт прогноза не может быть дальше даты экспирации. В то же время ограниченность периода обращения опционов имеет свои преимущества, заключающиеся в том, что достоверность оценки справедливой стоимости имеет однозначную дату верификации (в отличие от вечноживущих активов, для которых дата схождения рыночной цены и расчетной справедливой стоимости объективно не определена).

В тот момент, когда доля (вес) каждого актива определена, распределение капитала внутри портфеля, состоящего из линейных активов (в отличие от опционного портфеля), является тривиальной задачей. Для этого достаточно лишь определить, на какую сумму купить (или продать) выбранные активы. При этом должно соблюдаться единственное требование – общая сумма инвестиций во все активы должна равняться объему средств, выделенных на первом уровне системы управления капиталом. В такой ситуации размеры инвестиций в разные активы легко сравнимы между собой. В случае работы с опционами выделенные средства не инвестируются в полном объеме. Некоторые комбинации являются дебетовыми (требуют вложения средств), некоторые – кредитовыми (инвестор сам получает средства), при этом и те и другие могут требовать блокировки определенного объема средств на торговом счете (так называемые маржевые требования).

Маржевые требования представляют собой объем капитала необходимый для поддержания опционной позиции. В литературе их часто рассматривают как эквивалент объема инвестиций. На самом деле это не совсем так, поскольку в отличие от инвестиций маржевые требования могут изменяться во времени. Кроме того, их величина определяется расчетными методами, алгоритмы которых не стандартизированы и также могут меняться от брокера к брокеру (и даже один и тот же брокер может варьировать размер маржевых требований в зависимости от рыночной ситуации).

Из сказанного следует, что объем средств, выделенных на первом уровне системы управления капиталом, может использоваться лишь в качестве ориентира при распределении капитала между элементами портфеля. Необходимо стремиться к тому, чтобы, во-первых, суммарный объем маржевых требований ни в какой момент времени не превысил размеры этого ориентира и, во-вторых, чтобы выделенного капитала было достаточно для исполнения будущих обязательств при истечении и исполнении опционов. Эта задача осложняется изменчивостью маржевых требований во времени, поскольку их величина может ежедневно меняться в зависимости от изменяющихся рыночных цен базовых активов. В связи с этим решение о доле капитала, выделяемого на каждую комбинацию, должно, кроме всего прочего, учитывать прогноз будущей волатильности ее базового актива.

4.2. Принципы формирования опционного портфеля
4.2.1. Размерность оценки

Классическая теория портфеля предполагает распределение капитала исходя из оценки двух показателей – доходности и риска. Мы предлагаем для целей построения опционных торговых стратегий не ограничиваться такой двумерной системой, а рассматривать ее лишь как частный случай более общего подхода, не ограниченного количеством используемых показателей. Таких показателей может быть больше или меньше двух. В случае единственного показателя (одномерная система) средства, выделенные на первом этапе управления капиталом, распределяются между элементами портфеля пропорционально значениям этого показателя.

Одномерная система оценки может показаться неполной, поскольку вынуждена ограничиваться всего одним показателем – либо прогнозом доходности, либо оценкой риска. Однако применительно к опционам такой подход может быть оправдан, поскольку многие показатели (критерии), используемые для их оценки, сочетают в себе прогноз как доходности, так и риска. Наиболее наглядно это можно показать на примере критерия «математическое ожидание прибыли, рассчитанное на основе логнормального распределения». Данный критерий рассчитывается путем интегрирования платежной функции опциона (или комбинации нескольких опционов) по функции плотности вероятности логнормального распределения. Для построения функции плотности необходимы два параметра, среднее и стандартное отклонение. Именно стандартное отклонение используется в классической теории портфеля в качестве показателя риска. Таким образом, данный критерий сочетает в себе элементы прогноза и доходности и риска. Многие другие критерии, оценивающие будущую доходность на основе других распределений (не логнормального), также обязательно используют определенный показатель изменчивости цены, выражающий прямо или косвенно оценку риска.

Для некоторых торговых стратегий может использоваться одномерная система, не связанная напрямую с оценками доходностей и рисков. Например, количественные соотношения комбинаций в портфеле могут задаваться в зависимости от размера премий, получаемых или уплачиваемых при их создании. В частности, такой подход могут быть оправдан, если идея торговой стратегии основывается на том, что для коротких позиций все комбинации должны приносить одинаковый объем премии, а все длинные комбинации должны иметь одинаковую стоимость. Тогда, если премия одной из двух комбинаций составляет, например, $600, а другой $400, то поставленная цель достигается путем покупки (или продажи) двух контрактов по первой комбинации и трех – по второй. Особенностью данного метода является то, что открывается меньше позиций по комбинациям, состоящим из более дорогих (а значит, в большинстве случаев, и более рискованных) опционов. Это позволяет в определенной мере сбалансировать входящие в портфель позиции по риску.

Одномерная система, не связанная с оценками доходностей и рисков, может также основываться на эквивалентности позиции в акциях. Такой метод распределения капитала между вошедшими в портфель комбинациями аналогичен распределению капитала между линейными активами (когда объем средств, вкладываемых в каждый из активов, является мерой для расчета соотношения инвестиций). Показателем эквивалентности позиции в акциях служит величина, обратная стоимости акции (то есть количественное соотношение позиций, открываемых по каждому базовому активу, обратно пропорционально отношению цен базовых активов). Предположим, что торговая стратегия ориентирована на открытие позиций по двум комбинациям с соблюдением равного эквивалента в акциях. Это означает, что при исполнении опционов сумма инвестиций в оба базовых актива будет равной. Допустим, цена исполнения по одному базовому активу оставляет $50, а по второму $40. Тогда для каждого опциона в первой комбинации может быть открыта позиция в размере 20 контрактов, а во второй комбинации – в размере 25 контрактов. В этом примере в качестве ориентира была использована одинаковая для двух комбинаций сумма $100 000 (именно столько придется инвестировать в каждый базовый актив в случае исполнения опционов). Абсолютная величина ориентира может быть любой и не обязательно одинаковой для всех элементов портфеля. Главное, чтобы суммарный объем средств, требуемых при исполнении опционов, равнялся выделенному капиталу, а соотношение открытых позиций соответствовало целевым параметрам, задаваемым торговой стратегией. Следует принимать во внимание, что применение данного метода осложняется для комбинаций, имеющих разные количества опционов колл и пут. Поскольку неизвестно, какие из опционов (коллы или путы) окажутся в будущем в деньгах и будут исполнены, то эквивалентная позиция в акциях не может быть определена в момент открытия позиции. Кроме того, желательно, чтобы цены исполнения для коллов и путов совпадали. Несоблюдение последнего условия порождает проблему неопределенности при выборе страйка для расчета эквивалента. В качестве компромиссных решений этой проблемы можно предложить расчет средневзвешенной величины всех входящих в комбинацию страйков либо использование текущей цены базового актива.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация