В предельном случае научный подход предполагает полный отказ от использования процедуры оптимизации. Все торговые правила и параметры торговой системы определяются исключительно исходя из знаний, предположений и прогнозов разработчика. Очевидно, вероятность создания прибыльной стратегии в условиях полного отказа от оптимизационной настройки системы на исторических данных крайне низка. Насколько нам известно, научный подход в чистом виде практически не используется в реальной торговле.
Альтернативный подход основывается на полном отказе от использования осмысленных априорных закономерностей и знаний в процессе разработки автоматизированных торговых стратегий. Этот подход предполагает массированное использование компьютерных технологий. В упрощенном виде его можно охарактеризовать, как поиск таких алгоритмов покупки и продажи активов, которые позволяют максимизировать задаваемые разработчиком функции полезности. Алгоритмы выбираются из большого числа готовых библиотек либо создаются самим разработчиком. При этом механизм построения алгоритмов не задается каким-либо разумным образом, основанным на предварительных предположениях, и не ограничивается никакими внесистемными соображениями. Выбор торговых алгоритмов осуществляется исключительно на основе их тестирования на исторических временных рядах. Получаемая в результате торговая стратегия представляет собой набор правил, лишенный определенной экономической и поведенческой логики. Следуя терминологии Роберта Пардо, мы будем называть такой подход эмпирическим.
В предельном случае эмпирический подход основывается исключительно на оптимизации и целенаправленном поиске таких комбинаций алгоритмов и параметров, которые принесли бы максимальную прибыль (минимальный убыток либо удовлетворяли требованиям любой другой функции полезности) в прошлом. На сегодняшний день существует множество высокотехнологичных разработок, позволяющих осуществлять эффективный и достаточно быстрый поиск оптимальных алгоритмов и параметров, удовлетворяющих требованиям эмпирического подхода. В качестве примера можно привести нейронные сети и генетические методы, позволяющие находить оптимальные решения за счет построения самообучающихся систем.
Как правило, торговые стратегии, созданные на основе эмпирического подхода, показывают превосходные результаты в ходе тестирования на исторических временных рядах, однако приводят к провальным результатам в реальной торговле. Причиной этого является чрезмерная заоптимизированность (overfitting). Не спасает даже применение анализа на условно-будущем периоде (walk-forward), поскольку наличие большого числа степеней свободы при построении стратегии позволяет выбрать такой набор правил, который позволит получить приемлемые результаты не только на оптимизационном периоде, но и на условно-будущем периоде, не задействованном в ходе оптимизации (подробнее об этом будет рассказано в главе, посвященной бэктестингу). Поэтому практическое использование эмпирического подхода в его чистом виде весьма рискованно и малоприменимо в реальной торговле.
1.2. Рациональный подход к построению торговых стратегий
Большинство трейдеров сочетают при разработке торговых стратегий элементы как научного, так и эмпирического подходов. Такой комбинированный подход мы будем называть рациональным.
На начальном этапе реализации рационального подхода, формируется набор правил, определяющих общую структуру будущей стратегии. Эти правила основываются на предварительных знаниях и предположениях о поведении рынка. На этом этапе часто используются результаты статистических исследований, проведенных самим разработчиком, либо полученных из средств массовой информации, научных публикаций, частных источников. Закономерности, установленные в ходе подобных исследований, позволяют заложить в разрабатываемую стратегию определенную логику и экономический смысл. В то же время такие исследования могут выявлять зависимости, лишенные какой-либо логики и не поддающиеся объяснению с точки зрения экономических законов или известных особенностей биржевой динамики. К таким зависимостям следует относиться с большой осторожностью, поскольку они могут носить случайный характер или возникать в результате искусственной настройки на данные (data mining).
Начальный этап построения стратегии основывается по большей части на элементах научного подхода. На этом этапе необходимо определить следующее:
• принципы генерирования сигналов на открытие и закрытие торговых позиций;
• индикаторы, используемые для генерирования сигналов на открытие и закрытие торговых позиций;
• набор инвестиционных активов потенциально доступных для торговли;
• требования, предъявляемые к портфелю, и накладываемые на него ограничения;
• принципы управления капиталом (доля капитала инвестируемого в портфель);
• принципы распределения капитала между элементами портфеля;
• методы и инструменты управления рисками.
На следующем этапе построения торговой стратегии правила, отобранные на основе научных принципов, описываются в виде строго формализованных процедур. Данный этап характеризуется преимущественным использованием элементов эмпирического подхода. Для этого необходимо:
• ввести в систему определенное количество параметров;
• задать алгоритмы расчета параметров;
• установить порядок выбора числовых значений параметров.
Практически каждое правило, сформулированное на научной основе, может быть формализовано с использованием разного количества параметров. Алгоритмы расчета параметров могут быть самыми разными. И, наконец, порядок выбора числовых значений параметров означает выбор определенной схемы оптимизации.
Принятие решений о количестве параметров, методах их расчета и оптимизации, как правило, не зависит от экономических оценок разработчика, а определяется исходя из технических ограничений и требований, предъявляемых к общей структуре стратегии. В свою очередь, ограничения и требования задаются исходя из соображений надежности, устойчивости и прочих показателей создаваемой стратегии, среди которых не последнее место занимает решение проблемы возможной чрезмерной оптимизации.
В результате рационального сочетания научного и эмпирического подходов получаются стратегии, основанные, с одной стороны, на осмысленных экономических принципах и закономерностях, а с другой стороны, использующие преимущества оптимизации и современных достижений в области IT-технологий.
В этой книге мы будем придерживаться принципов рационального подхода к разработке торговых стратегий. При этом следует помнить, что основной задачей разработчика является разумное сочетание методов научного и эмпирического подходов. Для этого требуется взвешенное распределение базовых компонентов торговой стратегии между двумя основными категориями: (1) категорией компонентов, задаваемых исходя из смысловых соображений и (2) категорией компонентов, формируемых методами подбора и оптимизации.
1.3. Особенности опционных торговых стратегий
1.3.1. Нелинейность и особенности оценки опционов
Как уже упоминалось выше, опционы, в отличие от многих других объектов инвестирования, обладают нелинейной платежной функцией. Поэтому оценка инвестиционной привлекательности опционов и получение торговых сигналов должны основываться на других принципах.