Книга Почему. Руководство по поиску причин и принятию решений, страница 77. Автор книги Саманта Клейнберг

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Почему. Руководство по поиску причин и принятию решений»

Cтраница 77

Именно поэтому программа сокращения численности учеников в калифорнийских классах пошла не так. Она была просто введена, без изменения чего-либо другого. Масштабное и при этом скорое воплощение привело к различиям профессионализма учителей в некоторых районах, а также к сокращению финансирования и ограничению места для других проектов.

Сосредоточиваясь на вопросе о непосредственном достижении цели вмешательства, нужно проанализировать, к каким еще последствиям оно может привести. Если прогнозы делаются на основе модели, где переменная «размер класса» просто назначается истинной или ложной, они не учитывают, что случится, если сократить размеры классов за счет финансовых льгот, перенаправляя ресурсы из других программ, и если персонал для этих новых классов будет набран неквалифицированный.

Правда, более детализированная модель (каузальная, которой мы научаемся, или симуляционная, которую мы строим), предусматривающая не только причину, но и метод ее воплощения, поможет сравнить различные способы сокращения численности учеников. То есть мы сможем оценить следствия сначала таргетированием [403] областей, где цель труднодостижима, вместо того чтобы перейти прямо к реализации программы в масштабе всего штата; сможем протестировать различные программы льгот и т. д.

Однако далеко не все непреднамеренные последствия негативны. Некоторые на самом деле могут дать лучшие доказательства в пользу результативности программы, если ее преимущества окажутся выше ожидаемых. Например, если прокат велосипедов снизил загрязнение воздуха, это положительный побочный эффект.

Такие побочные действия порой возникают потому, что мы не имеем возможности манипулировать единственной вещью изолированно от прочих. Вместо «того самого» вмешательства может понадобиться изменить много факторов одновременно. Мы, скорее всего, не сможем просто предоставить велосипеды для проката; вероятно, понадобится одновременно устроить выделенные велосипедные дорожки – либо желая развивать велосипедный спорт в целом, либо как необходимое условие безопасности программы.

Таким образом, в одно и то же время может быть введено в действие множество программ, непредсказуемо взаимодействующих. Например, программа проката велосипедов, не предусматривающая выдачи защитных шлемов, может стартовать одновременно с принятием закона, требующего носить такие шлемы. Следствием закона будет низкий уровень пользования программой, если люди не хотят носить с собой шлемы повсюду.

Ко множеству вещей, изменяющихся одновременно, добавляется проблема планирования и оценки вмешательств, так как нельзя сразу сказать, какое именно вызвало некие очевидные следствия. Если, однако, известно о различных компонентах, есть возможность их учесть [404].

10. Двигаемся дальше. Почему же все-таки причинность
Потребность в причинности

Тысячи лет спустя после эпохального труда Аристотеля о причинности, через сотни лет после того, как Юм сформулировал два ее определения, и десятилетия после того, как автоматизация причинно-следственных выводов стала возможной благодаря новым мощным компьютерам, каузальность по-прежнему остается неразрешенной проблемой. Люди склонны видеть причинно-следственные связи там, где их нет, а наши алгоритмы не имеют «защиты от дурака». Более того, как только мы находим причину, все равно остается трудность использования этой информации для предотвращения или продуцирования определенного результата, поскольку существуют ограничения относительно того, какую именно информацию мы собрали и до какой степени способны ее осмыслить.

Теперь, рассмотрев все случаи, когда методики не работают, а ученые и политики совершают досадные каузальные ошибки, вы можете спросить: а какое нам до этого дело? Мы же более не связаны рамками маломасштабных экспериментов, когда приходится систематически изменять только один объект за раз, чтобы узнать, как работает система. Теперь мы располагаем громадными объемами данных о покупательских привычках, медицинских записях и активности в Сети, и все это – в цифровом формате. Теперь, куда бы вы ни направлялись, можете взять с собой датчик ускорений и GPS «в одном флаконе» (то есть смартфон), а ваша деятельность в Сети отслеживается множеством способов. Природа интернета, распространение электронных медкарт и вездесущие сенсоры сделали возможным генерирование огромного объема информации о великом количестве видов деятельности большего числа людей, чем когда бы то ни было. При таком массиве исходного материала, может, и не слишком важно, как что-то там работает. Можно отыскать информацию для корреляции – и хватит [405].

Когда есть столько информации, да еще такой детальной – последовательность книг, которые приобретает человек; каждый шаг, который он делает; результаты миллионов телефонных звонков в рамках политической кампании, – продавцы могут составлять рекламные объявления в расчете на целевых покупателей, фитнес-центры – оценивать, сколько калорий вы сожгли, а политики – выискивать избирателей, которых можно привлечь на свою сторону. Да, огромный объем данных в самом деле может повысить точность прогнозов, и если все, что мы желаем знать, это кто с большей вероятностью купит пару туфель, увидев рекламу, тогда, возможно, и не важно, как эта реклама работает. Даже если какие-то прогнозы окажутся ошибочными.

В таком случае забудьте про теорию и объяснения механизмов действия; все ответы уже содержатся в имеющихся данных.

Конечно, слово «причина» используется не всегда. Анализ данных может охватывать ассоциации, корреляции, связи, тенденции, взаимоотношения, взаимосвязи и факторы риска. И даже в тех случаях, когда язык каузальности звучит уж слишком туманно, выводы и заключения часто все равно применяются так, как если бы они причинами и были. В конце концов, мы оперируем сведениями, чтобы выяснить вероятный итог и иметь возможность изменить его или проконтролировать.

Даже если вам не приходится анализировать данные такого рода по долгу службы и неинтересно забираться в дебри функционирования девайсов вроде вашего фитнес-трекера, вам все равно не укрыться от результатов аналитической работы, которую выполняют другие.

Стоит ли поддерживать новую политику, предусматривающую снижение страховой премии людям, которые носят шагомеры? Почему мы выбираем одно лекарство, а не другое? Как мы уже видели, корреляции здесь не помогут. Даже если бы мы могли делать безошибочные прогнозы и осуществлять вмешательства на их основе, мы все равно всегда хотим знать, почему происходит то или иное, – и дети со своим назойливым «почему», и взрослые, которым нужно решить, где ошибка и кто виноват.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация