Чтобы предотвратить перемешивание, применяется кластерный метод рандомизации по группам, а не по отдельным лицам. В таком подходе вместо работы с учениками распределение по разным текстам сообщений проводится между школами.
Другой пример – рандомизация медицинской практики или больницы по методике лечения вместо рассмотрения отдельных пациентов. Здесь, чтобы добиться аналогичного уровня надежности результатов, нужны масштабные выборки, потому что отдельные лица в кластере могут коррелировать, а кластеры способны иметь разные размеры. В качестве кластера может выступать семья (которая будет сильно взаимосвязана благодаря генетике и окружающим условиям) или учебное заведение (соотношение может оказаться ниже, но все-таки присутствует из-за общего местонахождения)
[275].
* * *
В зависимости от уровня (индивидуального или группового) рандомизация двух одинаковых групп, отличающихся только вмешательством, грешит отсутствием детализации участников (группы не обязательно должны быть идентичны, просто сравнимы).
Давайте решим, кто подходит нам как участник эксперимента.
Скажем, мы тестируем лекарства от изжоги. Можно привлечь людей любого возраста и пола, однако у многих может не быть этого симптома. При условии, что данные для исследования ограничены и время эксперимента также имеет рамки, это неразумная трата ресурсов, и большинство не страдающих изжогой вряд ли захотят участвовать.
Очертим круг участников теми, у кого изжога в анамнезе. Следует ли включать сюда людей, страдающих изжогой из-за еще какого-то состояния, например беременности? Включать лиц любого возраста или исключить детей? Возможно, мы считаем, что физиологические процессы, лежащие в основе заболевания, фундаментально отличаются в каждом возрасте, поэтому решаем включить в наш пул всех, от 21 до 65 лет, с изжогой в истории болезни. Следующая проблема: некоторые, скорее всего, ежедневно принимают лекарства от этой хвори или страдают другими заболеваниями, способными влиять на действие тестируемого препарата. В идеале группа участников должна состоять из тех, кто не принимает никаких средств, потенциально готовых взаимодействовать с испытываемым медикаментом. Тогда мы протестируем препарат на участниках от 21 до 65 лет с изжогой в анамнезе, которые не принимают лекарства от нее ежедневно.
Выборка участников исследования может полностью определить результаты за счет ее смещения – из-за отдельных лиц, которые будут принимать решение о своем участии, или из-за иных факторов, определяющих, получат ли они такую возможность вообще. Как мы видели в главе 3, некоторые смещения могут приводить к поиску доказательств в пользу конкретного вывода или влиять на то, как мы оцениваем собранные аргументы. Методология эксперимента также способна смещать данные в том или ином направлении. К примеру, в политических телефонных опросах звонки только по стационарным аппаратам, исключая мобильную связь, могут исказить демографические данные участников. Так, в 2008 году исследовательский центр Пью обнаружил, что использование только домашних телефонов снизило перевес Обамы над Маккейном в среднем на 2–3 % в нескольких плебисцитах и на 5 % – в финальном, перед выборами
[276].
Считается, что рандомизация ограничивает смещение выборки. Но множество выборов, необходимых при подготовке эксперимента, означает, что угроза такого смещения не устранена. Участие в эксперименте добровольное, поэтому характеристики испытуемых могут фундаментально отличаться от остальных. Если исследователь, набирающий состав, знает, к какой группе приписать каждого из них (например, если распределение просто изменяется в рамках команд или есть более сложный порядок, известный исследователю), это также может определять, кто получит возможность участвовать. Такое смещение влияет на способность эксперимента предоставить данные для причинно-следственных выводов (внутренняя валидность), а также на масштабы применимости его результатов в зависимости от репрезентативности выборки (внешняя валидность, которую мы обсудим далее).
Нужно определить, как быть, если отдельные участники не доходят до конца эксперимента. Одни могут сойти с дистанции по своим причинам, а другие, напротив, прекратить участие из-за вмешательства, которое посчитали неприемлемым, например из-за побочных эффектов, перевешивающих любой позитив
[277]. Когда понадобится связаться с участниками, чтобы получить сведения об их показателях, кто-то окажется вне досягаемости (напротив его фамилии появляется пометка «утрачен контакт для дальнейшего наблюдения»). К примеру, чтобы оценить состояние пациентов с инсультом через 3 и 6 месяцев после пребывания в больнице, протокол может предусматривать необходимость позвонить им и задать вопросы. Но порой одни не отвечают, другие сменили номер телефона или переехали, и у исследователей нет никакой возможности с ними связаться
[278].
Некоторые эксперименты просто игнорируют пациентов, которых проблематично отследить при анализе данных. Это приводит к смещению результатов, которые намеренно не берутся в расчет, поэтому масса «утраченных контактов» может стать «красным флажком» при оценке работы. К примеру, мы тестируем вмешательство в виде физических упражнений в пожилом возрасте. По сравнению с контрольной группой, у которой оно отсутствует, те, кто упражнялся 10 часов в неделю, продемонстрировали пониженное содержание холестерина и прожили на 2 года дольше. Если, однако, 75 % этой выборки по вмешательству выпали из эксперимента из-за травм или усталости, исследователи, вероятнее всего, обнаружат, что те, здоровье которых позволяло тренироваться дольше часа в день, прожили дольше прочих.
То, что некто останется в эксперименте до конца, соблюдая это условие, будет ключевым фактором при оценке приемлемости вмешательства. Таким образом, просто не учитывая лиц с неполными данными, мы можем преувеличить эффективность воздействия и недооценить потенциальные побочные эффекты.
«Ошибка выжившего» – это разновидность смещения выборки, существующая при анализе только тех, кто выжил или остался в эксперименте до определенного момента. Но в более широком смысле это смещение появляется, когда анализируются результаты исключительно группы участников, достигших некоего измеряемого результата. Это могут быть компании, подававшие отчеты о прибылях и убытках не менее двух лет (при этом не учитываются те, кто обанкротился раньше); политики после первого срока в должности (не учитываются те, кто умер, ушел в отставку или был уволен); музыканты, записавшие хит (не учитываются те, кто вообще не добился контракта на запись).