Архитектура и функционирование когнитивных сетей
Чтобы понять, как работают когнитивные сети, уделим им больше внимания. Первые исследования
[63]
и попытки теоретического обоснования в этой области были предприняты психологами Джеймсом Макклелландом и Дэвидом Румельхартом
[64]
; со временем за ними последовали и другие. Существуют различные теории по поводу того, как функционируют подобные системы; но все эти теории принадлежат к одному главному направлению, и называется оно «коннекционизм» или «параллельная (распределенная) обработка данных».
Приверженцы коннекционизма рассматривают интеллект как огромный массив, состоящий из миллионов взаимосвязанных элементов. Очень упрощенно такая сеть изображена на рисунке 6.1. В нижней ее части расположены отдельные элементы – входные модули, реагирующие на конкретные воздействия окружающей среды (изображения, звуки, запахи и т. д.). Входные модули соединены многочисленными связями с другим, промежуточным набором скрытых модулей (в средней части рисунка), а те, в свою очередь, таким же образом связаны с выходными модулями, которые инициируют речь, мимику лица и движения тела. Когда один входной элемент активируется, он через множество соединений активирует промежуточный уровень скрытых модулей. Сила этих связей может меняться: если модули активируются одновременно, связи между ними укрепляются; в противном случае связи будут ослабевать. Кроме того, прочность соединений корректируется за счет воздействия обратной связи от среды – например, когда вы неправильно произносите слово или ошибочно идентифицируете скалу как мину, и вас поправляют.
Рисунок 6.1. Схематическое изображение коннекционистской модели работы интеллекта
Теоретики когнитивных сетей выдвигают гипотезу, что превращение наивного ребенка в опытного, способного распознавать паттерны взрослого – не что иное, как настройка обширной сети связей в процессе приобретения опыта. И большая часть этой настройки происходит за счет изменения паттерна и усиления связей на промежуточном уровне – уровне скрытых модулей. Настроенная сеть – вот что позволяет мгновенно распознавать паттерны.
Почему распознавание происходит мгновенно? Потому что элементы сетей способны работать параллельно, все разом. Вам не нужно ждать, пока один модуль передаст информацию другому, который затем отправит ее третьему, и так далее. Каждый элемент, активируясь, начинает посылать сигналы другим. Те, также активируясь, могут начать посылать ответные сигналы. В итоге каждый элемент воздействует на множество других и, в свою очередь, испытывает их воздействие. Кроме того, модули многократно продублированы и распределены по всей сети; дело не обстоит так, что только один из них воспринимает красный цвет, а другой – звук до-диез. Вот почему подобные теории называются теориями параллельной распределенной обработки данных.
Получить представление о том, что в данном контексте означает «параллельная», мы можем, рассмотрев рисунок 6.2.а. На нем изображены три буквы, скрытые чернильными кляксами. Что это за буквы: «R» или «Р», «E» или «F», «D» или «В»? Если смотреть на каждую по отдельности, их невозможно истолковать однозначно. Тем не менее у вас не возникает проблем с интерпретацией всей строки как «R-E-D». Да, но каким образом? Вы же не говорите себе: «Так. Там у нас R и D – значит, посередине должна быть E», – хотя именно так происходит, когда вы рассматриваете рисунок 6.2.b, где только одна буква воспринимается неоднозначно. Единственное, что устраняет двусмысленность, – цельность паттерна активированных модулей. Ваша сеть одновременно обрабатывает все варианты и находит наиболее вероятный – а следовательно, максимально правдоподобный – ответ.
Рисунок 6.2. Сеть как система параллельной распределенной обработки данных
Важно, что общее функционирование сети не зависит от некоего «начальника», сидящего в углу офиса и указывающего отдельным модулям-«сотрудникам», что им делать. Никто и ничто внутри сети не дает ей команду быть готовой к началу работы или начать работать, когда возникает необходимость. Активация происходит со стороны окружающей среды, а не со стороны «главнокомандующего».
И наконец, элементы сети, как правило, являются частью механизма, представляющего собой нечто большее, чем просто один хорошо настроенный паттерн. Да, конкретное свойство окружающей среды может активировать какой-то модуль. Но какая именно часть сети активируется, зависит и от того, какие еще модули активированы. Например, средняя буква на рисунке 6.2.с – «H» или «A»? Тут возможны варианты. В слове слева («THE») это «H», а в слове справа («CAT») – «A». Фактически мы имеем в обоих случаях один и тот же набор обозначений, которые активируют одни и те же модули. Сеть на самом деле допускает, чтобы вы видели сходство между «H» и «A», даже если используете эти обозначения как разные буквы (в конце концов, только определенные виды «H» и «A» выглядят подобными). Активированные модули будут связаны как с частями сети, дающими возможность выбрать «THE», так и с позволяющими прочесть «CAT». Но контекст, в котором появляются на странице эти знаки, будет влиять на то, какие части сети активируются, и, соответственно, на интерпретацию самих знаков.
Действительно, архитектура сетей может содержать паттерны связей, направленные на то, чтобы установить, в чем состоит разница между внешне сходными вещами («А» в «CAT» и «Н» в «THE»). Подумайте о том, насколько оттенки красного могут быть сходны с оттенками оранжевого. Вы можете воспринимать их почти одинаково, но в то же время категории красный и оранжевый существуют, и это – разные категории. Заметим, что классические образцы красного и оранжевого отличаются друг от друга куда больше, чем те конкретные цвета, с которыми вы сталкиваетесь в жизни. Существование этих категорий позволяет тонко воспринимать оттенки красного и оранжевого, сличая каждый из них с основным, базовым образцом.
А вот пример посложнее. Вы видите хорошо одетого, по-видимому состоятельного человека, который протягивает деньги человеку, одетому очень бедно. Сцену можно в равной степени истолковать как «человек подает нищему» или как «человек отдает деньги грабителю», но существование категорий «нищего» и «грабителя» позволяет вам разглядеть различия между двумя ее вариантами. Сети сконструированы так, что на одном уровне они четко отразят сходство в восприятии, а на другом среагируют на концептуальное или категорийное различие. Используя ранее принятую нами терминологию, можно сказать, что категории, которыми мы пользуемся для фрейминга, влияют на то, как мы интерпретируем, и даже на то, как воспринимаем результаты работы сети. И что сами эти категории или фреймы могут отражать эту работу на более высоком уровне, отстраиваясь от деталей, полученных визуально при восприятии окружающего мира.