Книга Магия реальности. Как мы узнаем истину, страница 38. Автор книги Ричард Докинз

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Магия реальности. Как мы узнаем истину»

Cтраница 38

Звук проходит через воздух, как волны изменяющегося давления воздуха. Когда вы слышите шум автомобильного двигателя, или скажем, трубы, потому что её звук более приятен, чем двигателя, звуковые волны проходят через воздух во всех направлениях от источника звука. Ваше ухо оказывается расположенным в одном из этих направлений, оно воспринимает изменения в давлении воздуха, производимые трубой, и ваш мозг слышит их как звук. Не подумайте, что достигают молекулы воздуха, исходящие из трубы, достигают ваше ухо. Это совсем не то: это был бы ветер, а ветры движутся только в одном направлении, тогда как звуковые волны исходят во всех направлениях, подобно волнам на поверхности водоёма, когда вы бросаете в него камушек.

Магия реальности. Как мы узнаем истину

Самая лёгкая для понимания разновидность волны — это так называемая Мексиканская Волна (рис. сверху), в котором люди на большом спортивном стадионе последовательно встают, а затем снова садятся, каждый делает это сразу же после человека по одну сторону от него (скажем, с левой стороны). Волна встающих, а затем садящихся, быстро движется вокруг стадиона. Никто фактически не движется с места, пока перемещается волна. Действительно, волна движется намного быстрее, чем кто‑либо смог бы бежать.

В водоёме перемещается волна изменений высоты поверхности воды. Её делает волной то, что сами молекулы воды не разбегаются от камушка. Молекулы воды лишь движутся вверх и вниз, подобно людям на стадионе. Ничто фактически не исходит от камушка. Так только кажется, поскольку расходятся высокие и низкие положения воды.

Звуковые волны несколько отличаются. В случае звука движется волна изменений давления воздуха. Молекулы воздуха немного перемещаются из стороны в сторону, по направлению от трубы или какого бы то ни было источника звука, и снова назад. Делая это, они наталкиваются на соседние молекулы воздуха и заставляют их тоже двигаться назад и вперёд. Те, в свою очередь, наталкиваются на своих соседей, и в результате волна соударений молекул — которая представляет собой волну изменения давления — расходится от трубы во всех направлениях. И именно волна движется от трубы к вашему уху, а не сами молекулы воздуха. Волна перемещается с постоянной скоростью, независимо от того, является ли источник звука трубой, голосом говорящего или автомобилем: около 1200 километров в час в воздухе (вчетверо быстрее под водой, и ещё быстрее в некоторых твёрдых телах). Если вы играете верхнюю ноту на трубе, скорость, с которой перемещаются волны, остаётся прежней, но расстояние между гребнями волны (длина волны) становится короче. Играйте нижнюю ноту, и гребни волны растянутся больше, но волна все ещё будет двигаться с той же скоростью. Таким образом, у высоких нот длина волны короче, чем у низких.

Магия реальности. Как мы узнаем истину

Это к вопросу о том, что представляют собой звуковые волны. Теперь по поводу допплеровского смещения. Представьте себе, что трубач, стоящий на заснеженном склоне, играет длинную, непрерывную ноту. Вы садитесь в сани и проноситесь мимо трубача (я выбрал сани вместо автомобиля, потому что они бесшумные, поэтому вы можете слышать трубу). Что вы услышите? Последовательные гребни волн покидают трубу на определённом расстоянии друг от друга, в зависимости от ноты, которую захотел сыграть трубач. Но когда вы несётесь по направлению к трубачу, ваше ухо будет получать последовательные гребни волн с большей скоростью, чем если бы вы неподвижно стояли стояли на вершине. Поэтому нота трубы будет звучать выше, чем она есть на самом деле. Затем, после того как вы пронеслись мимо трубача, в ваше ухо будут попадать последовательные гребни волн с меньшей скоростью (они будут казаться более растянутыми, потому что каждый гребень волны перемещается в том же направлении, что и ваши сани), поэтому кажущаяся высота ноты будет ниже, чем она есть на самом деле. То же самое происходит, если ваше ухо неподвижно, а источник звука движется. Говорят (я не знаю, насколько это правда, но это хорошая история), что Христиан Доплер, австрийский учёный, обнаруживший этот эффект, нанял духовой оркестр играть на открытой железнодорожной платформе, чтобы его продемонстрировать.

Магия реальности. Как мы узнаем истину

Мелодия, которую играл оркестр, внезапно опустилась на более низкий тон, когда поезд пропыхтел мимо поражённой публики.

Магия реальности. Как мы узнаем истину

Световые волны опять же отличаются — совсем не похожи на Мексиканскую волну и совсем не похожи на звуковые волны. Но они создают свой собственный вариант доплеровского эффекта. Вспомните, что красный конец спектра имеет большую длину волны, чем синий, с зелёным посередине. Предположим, все оркестранты на железнодорожной платформе Христиана Доплера одеты в жёлтую униформу. Когда поезд мчится по направлению к вам, ваши глаза получают гребни волн с более высокой скоростью, чем они получали бы, если бы поезд стоял. Поэтому есть небольшое смещение в цвете униформы по направлению к зеленой части спектра. Теперь, когда поезд прошёл мимо вас вас и мчится от вас, происходит обратное, и униформа оркестра становится чуть краснее.

Лишь одно неправильно в этом примере. Для того, чтобы вы заметили синее или красное смещение, поезда должны перемещаться со скоростью в миллионы километров в час. Поезда нигде не мчатся со скоростью, достаточной, чтобы стал заметён цветовой эффект Доплера. Но галактики мчатся. Смещение спектра к красному концу, которое вы можете ясно видеть в положениях линий штрихкода натрия на рисунке на странице 172, показывает, что очень отдалённые галактики удаляются от нас со скоростью в сотни миллионов километров в час. И чем они дальше (если измерять в «стандартных свечах», о которых я упоминал выше), тем быстрее они мчатся от нас (тем больше красное смещение).

Все галактики во Вселенной стремительно удаляются друг от друга, что также означает, что они стремительно удаляются и от нас. Не имеет значения, в какую сторону вы направляете свой телескоп — более удалённые галактики движутся прочь от нас (и друг от друга) со всё увеличивающейся скоростью. Вся Вселенная — сам космос — расширяется с грандиозной скоростью.

Раз такое дело, мы можем спросить, почему только на уровне галактик космос выглядит расширяющимся? Почему звёзды внутри галактики не разбегаются прочь друг от друга? Почему ни вы, ни я не разбегаемся друг от друга? Ответ в том, что группы предметов, близких друг к другу, как все в галактике, испытывают сильнейшее притяжение своих соседей. Это держит их вместе, в то время как удалённые объекты — другие галактики — удаляются вместе с расширением Вселенной.

А теперь кое‑что поистине удивительное. Астрономы посмотрели на расширение и отработали его назад во времени. Это, как будто они создали фильм о расширяющейся вселенной, с разбегающимися галактиками, а затем прокрутили фильм назад. Вместо того, чтобы разбегаться друг от друга, в обратном фильме галактики сходятся. И по этому фильму астрономы могут рассчитать тот момент в прошлом, когда расширение вселенной должно было начаться. Они даже могут рассчитать, когда был этот момент. Так они узнали, что это было где‑то от 13 до 14 миллиардов лет тому назад. Это был момент, когда возникла сама Вселенная — момент, называемый ‘большой взрыв’

Вход
Поиск по сайту
Ищем:
Календарь
Навигация