Книга Кто бы мог подумать! Как мозг заставляет нас делать глупости, страница 55. Автор книги Ася Казанцева

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Кто бы мог подумать! Как мозг заставляет нас делать глупости»

Cтраница 55

Я тут совершенно не ставлю себе задачу описать все возможные сигналы и все способы ответов на них. Я только хочу подчеркнуть, что все эти штуки на самом деле очень подробно изучены и с каждым годом накапливается все больше деталей. Современная молекулярная биология довольно твердо и четко представляет, что творится в клетке на уровне молекул: кто с кем связывается, почему это возможно, как они изменяются, как отрываются друг от друга, куда и почему плывут дальше. Все детали описаны в научных статьях, а все базовые принципы — в университетских учебниках (например, по цитологии), и если вы зададитесь во просом, какой именно молекулярный каскад происходит, когда молекула инсулина взаимодействует с рецептором на поверхности мышечной клетки, то найти эту информацию не составит никакого труда. Я не стала вдаваться в такие детали в книжке, потому что это никто не стал бы читать.

Рецептор не обязательно расположен именно на мембране клетки. Некоторые сигнальные молекулы, например стероидные гормоны, умеют самостоятельно просачиваться сквозь мембрану, и тогда рецепторы к ним могут находиться внутри клетки — в цитоплазме или на оболочке ядра. Но дальше происходит все то же самое: рецептор меняет конформацию, воздействует таким образом на еще какой-нибудь белок, кто-нибудь отщепляет от кого-нибудь какую-нибудь молекулярную группу, появляются какие-нибудь новые сигнальные молекулы, они воздействуют, допустим, на рецепторы ядра, внутри него появляются другие сигнальные молекулы, связываются с ДНК, запускают или подавляют считывание какого-нибудь гена, и клетка опять же изменяет какую-нибудь свою активность.


Восприятие химических сигналов клеточными рецепторами — это основа работы нервной системы. Каждая наша нервная клетка — нейрон — состоит из тела и множества отростков: дендритов (их много, и они собирают информацию) и аксона (он, как правило, один, хотя обычно разветвляется в конце и отправляет информацию дальше, к следующим нейронам). Информация — это электрический ток, который движется по отростку благодаря работе мембранных каналов, которые в нужный момент запускают внутрь клетки ионы натрия, в нужный момент выпускают из клетки ионы калия, все это приводит к изменению электрического заряда снаружи и внутри мембраны и к дальнейшему распространению сигнала. Но самое интересное начинается в тот момент, когда электрический импульс доходит до конца аксона. Просто перескочить на дендрит следующего нейрона он не может. Контакт между нейронами, синапс, устроен более сложно.

Абсолютное большинство нейронов млекопитающих общаются друг с другом с помощью нейромедиаторов. Когда электрический сигнал доходит до конца аксона, под его действием в синаптическую щель высвобождаются молекулы, заранее запасенные в пресинаптическом пространстве. Это и есть нейромедиаторы — дофамин, норадреналин, серотонин, гамма-аминомасляная кислота или любой другой из героев книжки. Они героически проплывают десятки нанометров синаптической щели и связываются с рецепторами на постсинаптической мембране — а это приводит к тому, что второй нейрон тоже начинает впускать или выпускать ионы калия и натрия и генерирует свой собственный электрический ток (или, наоборот, блокирует всякую возможность возникновения потенциала, если речь идет о тормозном нейромедиаторе).

Прелесть такой системы передачи в том, что на нее возможно влиять множеством разных способов. Первый нейрон может выпускать множество разных нейромедиаторов в любых количествах. Он может захватывать их из синаптической щели обратно. В пространстве между нейронами могут присутствовать ферменты, расщепляющие нейромедиатор. Рецепторы могут быть более или менее чувствительны к нейромедиаторам. На все эти параметры можно влиять с помощью дополнительных молекул, как вырабатываемых в организме, так и купленных в аптеке, и таким образом в широких пределах модифицировать работу нейронов, а значит, и настроение, память, обучение. Еще один очевидный пример лигандов, связывающихся с рецепторами в многоклеточном организме, — это гормоны. В узком смысле гормонами называют вещества, которые вырабатываются специализированными эндокринными железами — эпифизом, надпочечниками, щитовидной железой и т. д. Более современное определение включает любые вещества, которые вырабатываются в одних тканях и влияют на другие, например лептин, который производится жировыми клетками, или холецистокинин, вырабатывающийся в тонком кишечнике. Оба этих гормона-в-широком-смысле могут воздействовать на мозг, подавляя чувство голода.


Кто бы мог подумать! Как мозг заставляет нас делать глупости

Клетки могут принять решение о производстве гормона самостоятельно. Допустим, поджелудочная железа сама анализирует уровень сахара в крови и, если его становится много, вырабатывает больше инсулина, разрешающего клеткам забрать этот сахар и съесть его. Но присутствует и центральная регуляция: гипоталамус собирает всю информацию о составе крови, работе внутренних органов, состоянии мозга, времени суток и так далее, вырабатывает молекулярные сигналы для гипофиза, а тот в свою очередь выделяет гормоны, регулирующие работу организма как напрямую, так и за счет воздействия на все остальные эндокринные железы нашего тела.

Химическая природа гормонов разнообразна: в принципе почти любая молекула в ходе эволюции имеет шанс превратиться в посланника судьбы. В нашем случае две самые большие группы — это стероидные и пептидные гормоны. Первые производятся на базе холестерина (да, это вообще ужасно важная и нужная молекула, без нее еще и клеточные мембраны не смогут существовать; хорошая новость в том, что организм умеет синтезировать холестерин самостоятельно, так что можно не следить специально за его присутствием в пище). К стероидным гормонам относятся все главные половые гормоны (эстрадиол, тестостерон и т. д.) и все кортикостероиды, в том числе «гормон стресса» кортизол. Стероидные гормоны легко проникают сквозь клеточные мембраны, так что рецепторы к ним расположены не на поверхности клеток, а внутри. Пептидные гормоны — это цепочки аминокислот. Их не называют белками, потому что не доросли и не заслужили: белки длинные, а пептиды короткие. Например, в окситоцине всего девять аминокислот. В инсулине две цепи, А и В, первая состоит из 21, а вторая из 30 аминокислот. Впрочем, пептидные гормоны синтезируются как классические белки, и первоначально они вполне длинные, просто потом разрезаются на несколько кусочков, один из которых становится гормоном, а другие тоже на что-нибудь пригождаются. Но абсолютное большинство пептидных гормонов вырабатываются в гипоталамусе и гипофизе, и поэтому судьба побочных продуктов их производства изучена еще не полностью — тут с главными бы продуктами окончательно разобраться.

Существует много гормонов, которые не являются ни стероидами, ни пептидами. Своя особенная структура, например, у гормонов щитовидной железы, или у адреналина, или у мелатонина. Этот последний — производное триптофана, то есть аминокислоты, но одной-единственной. Триптофан превращается в серотонин, а серотонин в свою очередь в мелатонин. В популярных статьях о диетах нередко встречается утверждение, что бананы богаты триптофаном, а значит, их надо есть ради синтеза серотонина и улучшения настроения. Это сомнительно: с тем же уровнем достоверности можно предположить, что из излишков серотонина будет синтезирован мелатонин и в лучшем случае вам захочется спать, а в худшем начнется сезонная депрессия. Есть научные исследования о том, что при остром недостатке триптофана в диете настроение действительно падает, но неполноценное питание вообще не способствует личному благополучию; а вот идея о том, что надо есть именно бананы, чтобы быть счастливыми, — это, видимо, все-таки городская легенда.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация