— Ну, это — широко известный факт.
— Но гораздо менее известно о необычном поведении частиц. Некоторые физики пришли к выводу, что субатомные частицы способны переходить с одного уровня энергии на другой, минуя переходное состояние.
— Минуя переходное состояние между двумя уровнями?
— Это весьма странное и спорное явление получило название квантового скачка. Его можно сравнить с подъемом человека по лестнице. Мы переступаем со ступеньки на ступеньку без каких бы то ни было промежуточных этапов между ними, ведь так? Между двумя ступеньками нет полуступеньки. Мы как бы подпрыгиваем и сразу оказываемся выше. И есть физики, которые отстаивают идею, что в мире квантов на уровне энергетических состояний происходит нечто подобное. Переход из одного состояния в другое выполняется без промежуточных стадий. Нам известно, что микрочастицы перемещаются скачкообразно. Но некоторые исследователи полагают, что когда речь идет о субатомном мире, пространство перестает быть непрерывным и становится как бы дробленым, порционным. То есть скачки совершаются без прохождения через промежуточное состояние. — Ариана опять сморщила лоб. — Должна сказать, лично я так не считаю и никогда не встречала никаких доказательств, это подтверждающих.
— Действительно, эта идея… э-э-э… довольно странная.
Ариана подняла кверху указательный палец.
— Это еще не все. Было установлено, что материя проявляется одновременно в частицах и в волнах. Как пространство и время или энергия и масса являются двумя сторонами одной медали, так же обстоит дело и с волнами и частицами, которые представляют две ипостаси материи. Проблема дала о себе знать, когда возникла необходимость перевести это в плоскость механики, которая позволяет предвидеть поведение материи. В классической и релятивистской физике механика детерминирована. Если, скажем, нам известно, где сейчас находится Луна, каковы направление и скорость ее движения, мы в состоянии рассчитать местоположение нашего спутника в определенный момент в будущем или прошлом. Например, Луна движется со скоростью тысяча километров в час в левую сторону от наблюдателя, это значит, что через час она переместится на тысячу километров влево. Это и есть механика. Благодаря ей, зная положение и скорость объектов, возможно предвидеть их эволюцию в пространстве. В квантовом мире все функционирует иначе. Даже если мы знаем координаты частицы, определить ее точную скорость нельзя. А если нам известна скорость, мы не можем зафиксировать точное местоположение. Это называется принципом неопределенности, идею которого сформулировал в 1927 году Вернер Гейзенберг. Принцип неопределенности сводится к тому, что мы можем знать достоверно либо скорость частицы, либо ее положение, но не то и другое одновременно.
— И как в таком случае узнают о перемещении частицы?
— В этом-то и проблема, что не узнают. Я могу знать местоположение и скорость Луны и таким образом рассчитать ее путь в прошлом и будущем. Но никакой метод не способен точно определить положение и скорость электрона, а потому я не в состоянии вычислить его перемещения ни в прошлом, ни в будущем. Это и есть неопределенность. Чтобы разрешить ее, квантовая механика обратилась к расчету вероятностей. Если, допустим, имеется две щели, через которые может пройти электрон, вероятность прохождения через каждую из них — правую или левую — равна пятидесяти процентам.
— Отличный способ решения проблемы.
— Да, но Нильс Бор усложнил задачу, сказав, что электрон пройдет одновременно сразу через обе щели — и через правую, и через левую. Иначе говоря, он может в одно и то же время находиться в двух местах.
— Но это невозможно.
— И тем не менее квантовая теория это предусматривает. Если мы поместим электрон в коробочку, условно поделенную на две части, электрон будет находиться одновременно в обеих ее частях в волновой форме. Однако стоит нам заглянуть внутрь коробочки, как волна немедленно рассеется, и электрон преобразуется в частицу, находящуюся в одной из частей коробочки. Если же мы не будем заглядывать, электрон продолжит пребывать одновременно в обеих частях в форме волны. Даже если обе части разделить не условно, а реально, а получившиеся две новые коробочки разнести, предположим, на расстояние в тысячу световых лет, электрон все равно продолжит оставаться одновременно в обеих. Но как только мы решим понаблюдать, что происходит в ближайшей к нам коробочке, электрон займет место в одной из них.
— Получается, что электрон занимает то или иное место, только когда за ним наблюдают? — с недоверчивым видом изрек Томаш. — Интересная история!
— Первоначально роль наблюдателя была выведена в принципе неопределенности. Гейзенберг пришел к заключению, что наблюдатель не способен знать одновременно точное местоположение и скорость частицы. Однако теория эволюционировала, и действительно, появились сторонники идеи, что электрон занимает то или иное место только тогда, когда за ним наблюдают.
— Но это лишено всякого смысла…
— Точно так же считали другие ученые, в том числе Эйнштейн. Поскольку расчет уступал место вероятности, Эйнштейн объявил, что Бог не играет в кости
[13]
, имея в виду, что положение частицы не может зависеть от присутствия наблюдателей, а уж тем более определяться при помощи расчета вероятности. Частица находится либо здесь, либо там, но не может быть и тут и там одновременно. Не принимая теорию Гейзенберга, физик по фамилии Шрёдингер для изобличения абсурда изобрел парадоксальную ситуацию. Он предложил живого кота поместить в ящик, где имелась запаянная склянка с цианистым калием и способное ее разбить устройство, приводимое в действие квантовыми процессами. Вероятность активации данного ударного механизма составляла пятьдесят процентов, то есть склянка с равной мерой вероятности либо оставалась целой, либо разбивалась вдребезги. В соответствии с квантовой теорией, в закрытом ящике два одинаково вероятных события происходят одновременно, и следовательно, кот должен был остаться одновременно и жив, и мертв. Точно так же, как электрон, если за ним не вести наблюдение, одновременно находится в обеих частях коробки. Ну разве это не абсурд?
— Конечно, это ни в какие ворота не лезет!
— И Эйнштейн так же думал. Но дело в том, что теория эта, сколь бы претенциозной и надуманной она ни представлялась, четко состыковывается с экспериментальными данными. Всякий ученый знает, что всегда, когда интуиция вступает в противоречие с математикой, верх берет математика. Так было, например, когда Коперник объявил, что Земля вращается вокруг Солнца, а не наоборот. Интуиция подсказывала: «Земля — это центр», поскольку все, казалось, крутится вокруг матушки-Земли. Но теория Коперника обрела союзников в лице математиков, которые при помощи известных им уравнений убедились, что лишь вариант «Земля вращается вокруг Солнца» находится в полном согласии с математикой. Поверили алгеброй гармонию. И сегодня мы знаем: математика оказалась права. То же самое происходило с обеими теориями относительности. В них много такого, что противоречит логике. Например, идея о расширении времени и прочее в том же духе, но ученые приняли эти концепции, поскольку они соответствуют математическим знаниям и наблюдениям за реальной действительностью. Бессмысленно звучит утверждение, что электрон, если за ним не наблюдать, находится одновременно в двух местах. Это противоречит интуиции, однако один к одному состыковывается с математикой и соответствует экспериментальным данным.