18. Sur M (2001). Cortical Development: Transplantation and rewiring studies, in International Encyclopedia of the Social and Behavioral Sciences, ed. N Smelser and P Baltes (New York: Elsevier).
19. Sharma J, Angelucci A, Sur M (2000). Induction of visual orientation modules in auditory cortex, Nature 404: 841–847. Клетки в этой обновленной слуховой коре теперь реагируют, скажем, на различную пространственную ориентацию линий.
20. Хочу предупредить об одной тонкости (подробнее рассмотрим ее в следующих главах): мозг приходит в мир не как абсолютно чистый лист. И по этой причине у хорька реагирующая на визуальные данные слуховая кора несколько неряшливее в кодировании по сравнению с нормальной зрительной корой. Генетические настройки местного значения придают одним участкам коры чуть большую предрасположенность к определенному типу входящей сенсорной информации. Между жестко заданными планами построения (генетикой) и гибкостью в зависимости от вида активности (живая, динамически переменчивая нейронная связь), как между краями спектра, располагается непрерывный диапазон постепенно меняющихся значений. Почему так? Потому что в масштабах эволюционного времени устойчивые входные данные медленно переходят из разряда заученного на протяжении жизни в разряд генетически запрограммированного. А наша цель — сосредоточить внимание на колоссальной гибкости мозга, наблюдаемой в пределах продолжительности человеческой жизни.
21. Bach-y-Rita P et al. (2005). Late human brain plasticity: vestibular substitution with a tongue brainport human-machine interface, Intellectica 1 (40): 115–122; Nau AC et al. (2015). Acquisition of visual perception in blind adults using the brainport artificial vision device, Am J Occup Ther 69 (1): 1–8; Stronks HC et al. (2016). Visual task performance in the blind with the brainport V100 vision aid, Expert Rev Med Devices 13 (10): 919–931.
22. Sampaio E, Maris S, Bach-y-Rita P (2001). Brain plasticity: “visual” acuity of blind persons via the tongue, Brain Res 908 (2): 204–207.
23. Levy B (2008). The blind climber who “sees” with his tongue, Discover, June 22, 2008.
24. Bach-y-Rita P et al. (1969). Vision substitution by tactile image projection, Nature 221: 963–964; Bach-y-Rita P (2004). Tactile Sensory Substitution Studies, Ann NY Acad Sci 1013: 83–91.
25. Эту область обозначают как MT+. См. Matteau I et al. (2010). Beyond visual, aural, and haptic movement perception: hMT+ is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals, Brain Res Bull 82 (5–6): 264–270. См. также Amedi A et al. (2010). Cortical activity during tactile exploration of objects in blind and sighted humans, Restor Neurol Neurosci 28 (2): 143–156; Merabet L et al. (2009). Functional recruitment of visual cortex for sound encoded object identification in the blind, Neuroreport 20 (2): 132. У незрячих также активируются многие другие участки затылочной доли коры, именно этого нам и следует ожидать вследствие кортикальных захватов, которые мы рассматривали в главе 3.
26. WIRED Science video: “Mixed Feelings”.
27. Forehead Retina System — разработка японской корпорации EyePlusPlus Inc. и Tachi Laboratory Токийского университета. Для имитации сетчатки в приборе применяется выделение контуров (для повышения контрастности) и временная фильтрация полосы частот.
28. Это хороший способ не позволять талии попусту бездельничать. См. Lobo L et al. (2018). Sensory substitution: using a vibrotactile device to orient and walk to targets, J Exp Psychol Appl 24 (1): 108. См. также Lobo L et al. (2017). Sensory substitution and walking toward targets: an experiment with blind participants. Исследования авторов показывают, что траектории движения незрячих не планируются заранее, а прокладываются прямо во время движения по мере поступления новой информации об окружающей обстановке.
29. Kay L (2000). Auditory perception of objects by blind persons, using a bioacoustic high resolution air sonar, J Acoust Soc Am 107 (6): 3266–3276. Акустические очки впервые были представлены публике в середине 1970-х годов и после дебюта прошли многие этапы дальнейшего усовершенствования. См. Binaural Sensory Aid Кея (стереофоническое сенсорное устройство для слепых) и представленную им позже более совершенную систему KASPA — Kay’s Advanced Spatial Perception Aid, которая отображает текстуру поверхностей через различия в тембре звука. Разрешение у подобных ультразвуковых устройств невысокое, особенно в вертикальной плоскости, и потому акустические очки наиболее полезны для обнаружения объектов, расположенных в узкой горизонтальной полосе пространства.
30. Bower TGR (1978). Perceptual development: object and space, in Handbook of Perception, vol. 8, Perceptual Coding, ed. EC Carterette and MP Friedman (New York: Academic Press). См. также Aitken S, Bower TGR (1982). Intersensory substitution in the blind, J Exp Child Psychol 33: 309–323.
31. Дело в том, что ввиду снижающейся с возрастом пластичности мозга сенсорное замещение требуется разрабатывать индивидуально — как под текущий возраст, так и с учетом возраста приобретения слепоты. См. Bubic, Striem-Amit, Amedi (2010).
32. Meijer PB (1992). An experimental system for auditory image representations, IEEE Trans Biomed Eng 39 (2): 112–121.
33. Технические подробности см. на www.seeingwithsound.com, и там же можно послушать, как звучит работающий vOICe-алгоритм.
34. Arno P et al. (1999). Auditory coding of visual patterns for the blind, Perception 28 (8): 1013–1029; Arno P et al. (2001). Occipital activation by pattern recognition in the early blind using auditory substitution for vision, Neuroimage 13 (4): 632–645; Auvray M, Hanneton S, O’Regan JK (2007). Learning to perceive with a visuo-auditory substitution system: localisation and object recognition with “the vOICe”, Perception 36: 416–430; Proulx MJ et al. (2008). Seeing “where” through the ears: effects of learning-by-doing and long-term sensory deprivation on localization based on image-to-sound substitution, PLoS One 3 (3): e1840.
35. Cronly-Dillon J, Persaud K, Gregory RP (1999). The perception of visual images encoded in musical form: a study in cross-modality information transfer, Proc Biol Sci 266 (1436): 2427–2433; Cronly-Dillon J, Persaud KC, Blore R (2000). Blind subjects construct conscious mental images of visual scenes encoded in musical form, Proc Biol Sci 267 (1458): 2231–2238.
36. Отзыв Пэт Флетчер из статьи в журнале американского общества слепых ACB Braille Forum — цит. по Maidenbaum S et al. (2014). Sensory substitution: closing the gap between basic research and widespread practical visual rehabilitation, Neurosci Biobehav Rev 41: 3–15.
37. У Amedi et al (2007) конкретно продемонстрирована активность в латеральной затылочной тактильной визуальной области (LOtv). Как представляется, эта область кодирует информацию о форме — активируется ли она зрением, осязанием, заучиванием или, как зрительный ландшафт, транслируется в звуковой. См. Amedi et al (2007). Shape conveyed by visual-to-auditory sensory substitution activates the lateral occipital complex, Nat Neurosci 10: 687–689. Краткое обобщение опыта одного из пользователей см. в Piore A (2017). The Body Builders: Inside the Science of the Engineered Human (New York: Ecco).