Книга Как вытащить из данных максимум. Навыки аналитики для неспециалистов, страница 25. Автор книги Джордан Морроу

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Как вытащить из данных максимум. Навыки аналитики для неспециалистов»

Cтраница 25

Обратите внимание на фильтрацию, которую обеспечивает эта таблица. Фильтрация данных позволяет нам получать нужные сведения гораздо быстрее. Или это не так? Давайте переформулируем: фильтрация позволяет нам все глубже и глубже погружаться в данные, чтобы найти эти сведения.

В рамках диагностического анализа разные сотрудники организации также могут работать с данными по-разному. Приведем несколько примеров.

● Топ-менеджеры. Руководители могут и должны играть важнейшую роль в определении причин, стоящих за появлением тех или иных данных. Рассматривая отчеты, сводки и другую информацию, топ-менеджеры анализируют ее с привлечением своего многолетнего опыта. Они ставят вопросы, высказывают идеи и активно участвуют в обсуждении. Главное для них – полноценно донести до технических специалистов свои мысли о причинах происходящего, а затем обратиться к ним за дальнейшими исследованиями.

● Аналитики. Демократизация данных предоставляет команде аналитиков доступ к огромному количеству информации. Аналитики могут строить визуализации, а затем проводить фильтрацию и другие манипуляции с данными, чтобы, проведя описательный анализ, увидеть, что произошло, и грамотно диагностировать ситуацию.

● Специалисты по обработке данных. Эти сотрудники тщательно изучают данные, чтобы найти все возможные «почему». Затем, опираясь на найденные причины, они строят прогнозы и модели (мы поговорим об этом подробнее, когда будем разбирать третий уровень аналитики).

Конечно, в организации не только эти сотрудники так или иначе работают с данными: эта работа на диагностическом уровне аналитики может принимать самые разные формы.

Третий элемент дата-грамотности – анализ данных: в нашем случае ее можно считать несколько избыточной. Анализ данных – суть диагностического анализа. Давайте вспомним наш гипотетический пример с врачом: он должен помочь пациенту и поставить диагноз. Сначала он ищет описательные признаки – симптомы, наблюдаемые внешне и описываемые пациентом. Затем, опираясь на свой опыт и знания, он предполагает диагноз. Чтобы подтвердить диагноз, он должен привлечь все свои профессиональные навыки. Так он постепенно выясняет, что же действительно случилось с пациентом.

То же самое должно происходить и в коллективе. Не у всех есть соответствующая подготовка, и не все способны провести полноценный диагностический анализ, но каждый сотрудник организации должен развивать навыки дата-грамотности, чтобы правильно отвечать все на тот же пресловутый вопрос «почему?». Работа с данными дает возможность каждому вносить свой вклад в общее дело: сотрудники совместно получают знания, на которых впоследствии будут основаны взвешенные и продуманные решения.


Как вытащить из данных максимум. Навыки аналитики для неспециалистов

И наконец, последний элемент дата-грамотности – общение на языке данных. Это обязательная часть: умение донести до других полученные знания помогает в принятии решений. Если коммуникация нарушена, организация не в состоянии принимать обоснованные решения. К сожалению, умение говорить на языке данных – или свободное владение данными – в мире аналитики встречается реже, чем хотелось бы, поэтому обучение дата-грамотности просто жизненно необходимо. На диагностическом уровне, как и на дескриптивном, анализ должен отвечать тем же критериям: быть простым, исчерпывающим и эффективным. Когда вы делитесь полученными результатами с другими, не нужно живописать весь процесс анализа поэтическим языком, говорите строго по существу. Свободное обращение с данными всех сотрудников позволяет организации создать подходящий план коммуникации и поддерживать сам процесс диагностического анализа от начала и до конца.

Можно ли привести примеры диагностической аналитики в действии? Конечно.

Пример 1

Один из лучших примеров использования дескриптивного и диагностического анализа – борьба со вспышкой холеры в Лондоне в 1854 году, о чем уже говорилось в главе 4 (см. рис. 6.5). Легенда гласит – а это, я настаиваю, именно легенда, поскольку со временем молва приукрашивает события, – что врач Джон Сноу с помощью визуализации данных помог остановить вспышку заболевания и предотвратить новую. Помимо того, что визуализация помогла сдержать болезнь, с ее помощью удалось сделать главное – подтвердить теорию, что вспышка была связана с загрязненной водой из водоразборной колонки. Так было опровергнуто ошибочное убеждение, будто холера передается по воздуху. Давайте рассмотрим эту визуализацию, чтобы еще лучше разобраться в двух первых уровнях аналитики.


Как вытащить из данных максимум. Навыки аналитики для неспециалистов

Во-первых, взгляните на рисунок и определите, что на нем изображено. Джон Сноу попросил нанести на карту все дома, где были отмечены случаи заболевания. Больше всего больных оказалось в районе Брод-стрит: там и располагалась колонка, из которой жители брали воду.

То, что написано в предыдущем абзаце, по сути и есть дескриптивный анализ. Я смог описать, что происходило и где происходило. Более глубокий анализ может выявить что-то еще, но сейчас нам интересен именно описательный метод. А вы, если хотите, можете провести дальнейший анализ карты – например, расположения пивоварен: высказывалось предположение, что на пивоварнях не было случаев заражения холерой, поскольку работники пили бесплатное пиво, а не воду.

Двигаясь по уровням аналитики, мы замечаем, что описательный анализ порождает новые вопросы: почему много случаев заболевания было отмечено в районе колонки на Брод-стрит? Так, слева особенно много отметок о случаях холеры. Масса случаев и вдоль самой Брод-стрит, но вдоль прилегающих улиц – уже меньше. Задаваясь вопросами, мы переходим на второй уровень аналитики – к использованию диагностических методов.

Имея перед глазами визуализацию данных о случаях холеры, мы погружаемся в диагностический анализ. Большое количество случаев холеры вокруг колонки? Повод для новых вопросов. Так или иначе, ответы ведут нас к колонке на Брод-стрит… И действительно: обнаружилось, что вода в колонке загрязнена. Через нее передавалась болезнь. Врача Джона Сноу можно считать одним из пионеров журналистики данных – когда в основе журналистского материала лежит обработка данных [33].

Пример 2

А теперь давайте обратимся к сфере продаж. Компании, работающие в самых разных отраслях, стремятся выводить на рынок новые продукты, привлекать клиентов и получать доход – это естественно. Есть ли польза от дескриптивной и диагностической аналитики для отделов продаж? Помогает ли работа с данными эффективно осуществлять продажи? Этот пример наглядно показывает, что польза, безусловно, есть. Знаю, что эту тему мы уже рассмотрели, но для начала сделаем шаг назад и вспомним про дескриптивную аналитику: что она может рассказать о потенциальных клиентах, их распределении по демографическим группам и о реальных показателях в сравнении со спрогнозированными.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация