Если руководство организации хочет сформировать стратегию в сфере данных и аналитики, то один из ключевых факторов успеха – дата-грамотность. В примере со строительством дома я упомянул одну важную деталь. Обратили ли вы на нее внимание? Я допустил, что вы – не профессиональный строитель! Как вы думаете, многие ли сотрудники вашей организации – обученные специалисты по работе с данными? «Обученные» – в самом буквальном смысле! Большинство людей не изучали data science ни в школе, ни в колледже, ни в университете. Когда я прошу вас построить дом, предоставляя лишь инструменты, материалы и рисунок, вы оказываетесь в том же положении, что и множество сотрудников, которые пытаются увидеть некий смысл в предоставляемых им данных, хотя даже не умеют пользоваться аналитическими методами… В целом можно сказать, что стратегия обязательно должна включать в себя человеческий фактор дата-грамотности.
Дата-грамотность и обработка данных
Наука о данных – в том или ином виде – появилась давно. Желание использовать данные для проверки и доказательства гипотез существовало у людей на протяжении многих эпох. Иными словами, с тех самых пор, как человек начал использовать информацию о наиболее эффективных способах утоления голода (передвижение стад диких животных, местонахождение съедобных кореньев и т. д.), и существует обработка данных. А когда так называемые большие данные вышли на передний план в мире бизнеса, наука о данных стала всеобщим достоянием. Вы и сами наверняка не раз слышали шутки, связанные с большими данными. Мир больших данных (который становится все шире), интернет вещей и многое другое сделали data science привычным термином бизнес-языка. В октябре 2012 года в Harvard Business Review была опубликована любопытная статья, которая еще больше заинтересовала бизнес-аудиторию понятием обработки данных: «Специалист по данным – самая сексуальная профессия XXI века» (Data Scientist: The Sexiest Job of the 21st Century)
[25]. Небывалое дело! Давайте радоваться, мы признаны сексуальными, наше время пришло!
Но рост популярности этой профессии тут же выявил и проблемы. Внезапно спрос на специалистов по данным превзошел предложение – не хватало людей, действительно имеющих соответствующее образование. В мае 2019 года в одной из статей было подчеркнуто: «По данным отчета, в текущем году количество вакансий специалистов по обработке данных может составить более 4000 – на 56 % больше, чем в 2018 году»
[26]. Однако меня в этой статье заинтересовало другое замечание: нехватка настоящих экспертов по обработке данных «не означает, что непрофессионалы не могут приобрести навыки, которыми обычно обладают специалисты в этой области». По-моему, это чистейшая правда. Впрочем, даже если руководители сумели отыскать профессионала (решив, что компании он все-таки необходим), могут возникнуть проблемы: как правильно его использовать, как вписать его в общий контекст… Как правило, это объясняется отсутствием стратегии в сфере данных и аналитики.
Учитывая растущий интерес к STEM (Science – естественные науки, Technology – научно-технические дисциплины, Engineering – инженерия, Mathematics – математика), современные люди все чаще и упорнее занимаются совершенствованием навыков, необходимых для экономики данных и дата-аналитики. Новая эпоха – информационная, цифровая, аналитическая – уже наступила, и организации не могут ждать, пока все их сотрудники полностью овладеют дата-грамотностью. Кроме того, STEM-образование, несомненно, замечательная вещь, но его недостаточно. Стоило бы добавить к этой аббревиатуре еще и букву А – Arts, гуманитарно-художественные дисциплины. Ни в коем случае нельзя пренебрегать литературой и искусством в нашем новом мире данных. Человек должен привносить в любую работу творчество и разнообразие, видеть то, чего не видит компьютер, придавать особую гуманистическую силу данным и аналитике. Кроме того, нужно уметь делать из данных истории.
Сейчас все больше людей получают или собираются получать соответствующее образование, но статья 2019 года, о которой говорилось выше, иллюстрирует одну очень важную деталь: раньше немногие стремились изучать обработку данных, статистику, количественный анализ и т. д. Но в условиях такой нехватки настоящих специалистов мы все же можем заполнить пробел – при помощи дата-грамотности.
Если взглянуть на пространство под зонтиком дата-грамотности (см. рис. 4.1), наука о данных как таковая крайне важна для всего этого пространства, а также для всех четырех уровней аналитических методов. Обработка данных помогает делать прогнозы, подталкивает руководителей организаций вглядываться в метафорический стеклянный шар, чтобы определять направление действий и придумывать решения. Сотрудники, владеющие обработкой данных, могут поставить себе на службу научный метод и другие способы тестирования гипотез, поиска решений и обретения знаний. Благодаря этому организации получают возможность двигаться вперед, изменяя расклад сил в своей отрасли. Словом, значение обработки данных в мире дата-грамотности сложно переоценить.
Приведу пример из личного опыта. Как-то раз мне довелось пообщаться с генеральным директором компании, специализирующейся не на чем-нибудь, а на data science. Я задал ему вопрос: «Сколько специалистов по обработке данных в вашем высшем руководстве или совете директоров?» Мой собеседник изобразил пальцами большой ноль. Удивительно: неужели сама мысль, что специалист по обработке данных может представлять компанию или выступать от ее имени, настолько всех пугает? Эта история иллюстрирует проблему – в пространстве данных и дата-аналитики постоянно действуют разрозненные и центробежные силы. В прошлом сфера данных, ПО и технологий всегда существовала в организациях как бы отдельно от всего остального. Ответственные за эту сферу сотрудники считались узкими специалистами, от них не требовалось владеть навыками коммуникации и публичных выступлений. Эту ситуацию необходимо в корне менять, и перемены должны стать частью стратегии.
Меня постоянно спрашивают: есть ли у специалистов по обработке данных собственное место в мире дата-грамотности? Я с полной уверенностью отвечаю: да! Если мы собираем мозаику информационно-аналитической стратегии и говорим о необходимости демократизации данных в организациях, то уметь эффективно общаться на языке данных должен каждый. Это означает, что внутриорганизационная подготовка специалистов-профессионалов по обработке данных будет отличаться от подготовки, которую должны пройти сотрудники, которые только начинают работать с данными. Нам нужно, чтобы настоящие специалисты учились выступать перед широкой публикой, эффективно общаться и помогать всем остальным путешествовать по миру данных. Готов поспорить, у большинства специалистов по обработке данных есть этот неприятный опыт: когда ты выступаешь перед аудиторией с результатами своей работы, а встречаешь абсолютно непонимающие взгляды. Масса важнейших знаний и идей остаются незамеченными просто потому, что аудитория не способна их воспринять. Дата-грамотность требует от специалистов строить выступление так, чтобы язык, на котором они говорят, был понятен каждому. Их роль должна измениться: теперь им следует вдохновлять других овладевать дата-грамотностью.