Онлайн книга
Примечания книги
1
Azizi F, et.al. Prevention of non-communicable disease in a population in nutrition transition: Tehran Lipid and Glucose Study phase II // SpringerLink. 2009. Jan. 25 // link.springer.com/article/10.1186/1745-6215-10-5.
2
Munblit D., et al. Assessment of Evidence About Common Infant Symptoms and Cow’s Milk Allergy // JAMA Pediatr. 2020. Jun. 1. Vol. 174. Pp. 6. Pp. 599–608 // doi: 10.1001/jamapediatrics.2020.0153.
3
Арахис относится к бобовым культурам, поэтому его принято указывать отдельно от орехов. Прим. ред.
4
Sicherer S.H., Sampson H.A. Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment // J. Allergy Clin. Immunol. 2014. Feb. Vol. 133. No. 2. Pp. 291–307// doi.org/10.1016/j.jaci.2013.11.020.
5
Bock S. A., et.al. Fatalities due to anaphylactic reactions to foods // The Journal of allergy and clinical immunology. 2001. Vol. 107. No. 1. P. 191–193 // doi:10.1067/mai.2001.112031 PMID 11150011.
6
Aggarwal A., et.al. Transfer of peanut allergy from donor to recipient after liver transplant // Ann. Hepatol. May-Jun 2019. Vol. 18. No. 3. Pp. 508–513 // doi: 10.1016/j.aohep.2018.10.006. Epub 2019 Apr 15.
7
Tavernise S. F. D. A. Says Importers Must Audit Food Safety // New York Times. 2013. July 26. Retrieved July 27, 2013; Strom S. F. D. A. Offers Sweeping Rules to Fight Food Contamination // New York Times. 2013. January 4. Retrieved January 5, 2013 // https://www.nytimes.com/2013/07/27/health/fda-proposes-rules-to-ensure-safety-of-imported-food.html.
8
Waggoner M. R. Parsing the Peanut Panic: The Social Life of a Contested Food Allergy Epidemic // Social Science & Medicine. 2013. Vol. 90. Pp. 49–55 // doi: 10.1016/j.socscimed.2013.04.031.
9
Michael C. Young. The Peanut Allergy Answer Book: 2nd Edition. Fair Winds Press // 2006. P. 168.
10
Du Toit G., et al. Randomized trial of peanut consumption in infants at risk for peanut allergy // N. Engl. J. Med. 2015. Feb 26. Vol. 372. No. 9. Pp. 803–813 // doi: 10.1056/NEJMoa1414850. Epub 2015 Feb 23.
11
Fleischer D. M., et.al. Consortium of Food Allergy Research (CoFAR). Sublingual immunotherapy for peanut allergy: a randomized, double-blind, placebo-controlled multicenter trial // J. Allergy Clin. Immunol. 2013. Jan. Vol. 131. No. 1. Pp. 119–127 // doi: 10.1016/j.jaci.2012.11.011. PubMed PMID: 23265698; PubMed Central PMCID: PMC3550002.
12
Li H., Yu J, et.al. Reduction of major peanut allergens Ara h 1 and Ara h 2, in roasted peanuts by ultrasound assisted enzymatic treatment // Food Chem. 2013. Nov. 15. Vol. 141. No. 2. Pp. 762–768 // doi: 10.1016/j.foodchem.2013.03.049. PubMed PMID: 23790845.
13
Mayo Clinic Staff. Celiac disease // 2021. August 10 // http://mayoclinic.org/diseases-conditions/celiac-disease/symptoms-causes/syc-20352220.
14
Pelsser L.M., et.al. Effects of a restricted elimination diet on the behavior of children with attention-deficit hyperactivity disorder (INCA study): a randomized controlled trial // Lancet. 2011. February 5. Vol. 377. No. 9764. Pp. 494–503 // doi: 10.1016/S0140-6736(10)62227-1.
15
Billing J., et.al. Antimicrobial functions of spices: why some like it hot // Q. Rev. Biol. 1998. Mar. Vol. 73. No. 1. Pp. 3–49 // doi: 10.1086/420058.
16
Mun S.-H., et al. Curcumin reverse methicillin resistance in Staphylococcus aureus // Molecules. 2014. Nov. 10. Vol. 19. No. 11. Pp. 18283–18295 // doi: 10.3390/molecules191118283.
17
Koosirirat C., et al. Investigation of the anti-inflammatory effect of Curcuma longa in Helicobacter pylori-infected patients // Int. Immunopharmacol. 2010. Jul. Vol. 10. No. 7. Pp. 815–818 // doi: 10.1016/j.intimp.2010.04.021.
18
Abdollahi E., et.al. Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: A nature-made jack-of-all-trades? // J. Cell Physiol. 2018. Feb. Vol. 233. No. 2. Pp. 830–848 // doi: 10.1002/jcp.25778.
19
С. Ф. Фоминых, А.О. Степнов. Томский период жизни профессора Б.П. Токина // Вестник Томского государственного университета. 2015. № 391. стр 148–154 // cyberleninka.ru/article/n/tomskiy-period-zhizni-professora-b-p-tokina.
20
Billing J., et al. Antimicrobial Functions of Spices: Why Some Like it Hot // The Quarterly Review of Biology. 1998. Mar. Vol. 73. No. 1. Pp. 3–49.
21
Tokin B. P. Poslednie gody zhizni i tvorchestva akademika A. A. Zavarzina [The last years of the life and work of academician A. A. Zavarzin]. In: Problemy sovremennoy biologii [Problems of modern biology]. Leningrad: Leningrad State University Publ., 1972, pp. 3–20.
22
Rossi F., et al. Protective effect of Heliotropium foertherianum (Boraginaceae) folk remedy and its active compound, rosmarinic acid, against a Pacific ciguatoxin // J. Ethnopharmacol. 2012. Aug. 30. Vol. 143. No. 1. Pp. 33–40 // doi: 10.1016/j.jep.2012.05.045.
23
Gan-Hong Chen., et al. Cloning and Characterization of a Plant Defensin VaD1 from Azuki Bean // Journal of Agricultural and Food Chemistry. 2005 // pubs.acs.org/doi/abs/10.1021/jf0402227.
24
Guzmán-Rodríguez JJ., et al. Plant antimicrobial peptides as potential anticancer agents // Biomed Res Int. 2015 // doi: 10.1155/2015/735087.
25
Pauling L. Vitamin C and the Common Cold // W. H. Freeman and Company, 1970.
26
Mikkelsen SU., et al. The role of vitamin C in epigenetic cancer therapy // Free Radic Biol Med. 2021, March 28 // doi: 10.1016/j.freeradbiomed.2021.03.017. Berretta M. et al. Multiple Effects of Ascorbic Acid against Chronic Diseases: Updated Evidence from Preclinical and Clinical Studies // Antioxidants (Basel). 2020 Nov 26 // doi: 10.3390/antiox9121182.
27
Медведев Ж. Витаминная афера // Огонек. 2011. № 5. С. 48.
28
Ran L., et al. Vitamin C as a Supplementary Therapy in Relieving Symptoms of the Common Cold: A Meta-Analysis of 10 Randomized Controlled Trials // Biomed Res Int. 2021 Apr 27 // doi: 10.1155/2020/8573742; Hemilä H., et al. Commentary: The Long History of Vitamin C: From Prevention of the Common Cold to Potential Aid in the Treatment of COVID-19 // Front Immunol. 2021 Apr 1 // doi: 10.3389/fimmu.2021.659001; Anderson TW., et al. Vitamin C and the common cold: a double-blind trial // Can Med Assoc J. 1972 Sep 23 // ncbi.nlm.nih.gov/pmc/articles/PMC1940935.
29
Garaiova I., et al. Probiotics and vitamin C for the prevention of respiratory tract infections in children attending preschool: a randomised controlled pilot study // Eur. J. Clin. Nutr. 2015. Mar. Vol. 69. No. 3. Pp. 373–379 // doi: 10.1038/ejcn.2014.174.
30
Johnston C. S., et al. Vitamin C supplementation slightly improves physical activity levels and reduces cold incidence in men with marginal vitamin C status: a randomized controlled trial // Nutrients. 2014. Jul. 9. Vol. 6. No. 7. Pp. 2572–2583 // doi: 10.3390/nu6072572.
31
Rowe S., Carr A. C. Global Vitamin C Status and Prevalence of Deficiency: A Cause for Concern? // Nutrients. 2020. Jul. Vol. 12. No. 7. P. 2008 // doi: 10.3390/nu12072008.
32
Hemilä H., et al. Vitamin C for preventing and treating the common cold // Cochrane Database Syst Rev. 2013 Jan 31 // doi: 10.1002/14651858.CD000980.pub4; Mayo Clinic Staff. Cold remedies: What works, what doesn't, what can't hurt // 2022, June 3 // mayoclinic.org/diseases-conditions/common-cold/in-depth/cold-remedies/art-20046403.
33
Lee S., et al. Effect of different cooking methods on the content of vitamins and true retention in selected vegetables // Food Sci Biotechnol. 2017 Dec 12 // doi: 10.1007/s10068-017-0281-1.
34
Kwakman P. H. S., et al. Two major medicinal honeys have different mechanisms of bactericidal activity // PLoS One. 2011. Mar 4. Vol. 6. No. 3. P. e17709 // doi: 10.1371/journal.pone.0017709.
35
Rennard B. O., et al. Chicken soup inhibits neutrophil chemotaxis in vitro // Chest. 2000. Oct. Vol. 118. No. 4. Pp. 1150–1157 // doi: 10.1378/chest.118.4.1150.
36
Handa O., et al. Inhibitory effect of polaprezinc on the inflammatory response to Helicobacter pylori // Can. J. Gastroenterol. 2002. Nov. Vol. 16. No. 11. Pp. 785–789 // doi: 10.1155/2002/631070; Орлова С. В. Хелатные комплексы в нутрициологии и диетологии. М., 3-е изд., перераб. и доп. 2007. С. 72.
37
При болезни Штаргардта в результате мутации клетки фоторецепторов постепенно вырождаются, и пациент полностью теряет зрение.
38
Farrell DJ, Bower L. Fatal water intoxication // J Clin Pathol. 2003 Oct // doi: 10.1136/jcp.56.10.803-a.
39
Matt’s Law // Wikipedia // en.wikipedia.org/wiki/Matt%27s_Law.
40
Sarah H. Peterson, et.al. Marine foraging ecology influences mercury bioaccumulation in deep-diving northern elephant seals // Proceedings of the royal society. 2015, July 7 // royalsocietypublishing.org/doi/full/10.1098/rspb.2015.0710; Danny Lewis. When Seals Molt, They Leave Behind Mercury // Smithsonian magazine. 2015, September 2015 // smithsonianmag.com/smart-news/when-seals-molt-mercury-levels-rise-180956542.
41
Coelho S. D., et al. Lead in duplicate diet samples from an academic community // Sci. Total Environ. 2016 Dec. 15. Vol. 573. Pp. 603–607 // doi: 10.1016/j.scitotenv.2016.08.133.
42
O. W. van Assendelft, Spectrophotometry of Haemoglobin Derivatives, Van Gorcum, 1970
43
Популярное блюдо китайской кухни: яйцо, выдержанное несколько месяцев в специальной смеси без доступа воздуха. Прим. ред.
44
Jin Y., et al. A systematic review on food lead concentration and dietary lead exposure in China // Chin. Med. J. (Engl.). 2014. Vol. 127. No. 15. Pp. 2844–2849 // https://pubmed.ncbi.nlm.nih.gov/25146625; Pan L., et al. Dietary exposure to lead of adults in Shenzhen city, China // Food Addit Contam. Part A Chem. Anal. Control Expo Risk Assess. 2016 Jul. Vol. 33. No. 7. Pp. 1200–1206 // doi: 10.1080/19440049.2016.1200750.
45
Lead in Food, Foodwares, and Dietary Supplements // U.S. Food and Drug Administration // fda.gov/food/metals-and-your-food/lead-food-foodwares-and-dietary-supplements.
46
К. Е. Макарова. et al. Альгинаты с различными молекулярными массами как сорбенты ионов кадмия и свинца // Известия Самарского научного центра Российской академии наук // 2013, 25 сентября // cyberleninka.ru/article/n/alginaty-s-razlichnymi-molekulyarnymi-massami-kak-sorbenty-ionov-kadmiya-i-svintsa.
47
Feitosa Teles F. F. Chronic poisoning by hydrogen cyanide in cassava and its prevention in Africa and Latin America // Food Nutr. Bull. 2002. Dec. Vol. 23. No. 4. Pp. 407–412 // doi: 10.1177/156482650202300416.
48
European Food Safety Authority // Apricot kernels pose risk of cyanide poisoning // 2016, April 27 // efsa.europa.eu/en/press/news/160427.
49
Salici S., Atayoglu A. T. Mad honey intoxication: A systematic review on the 1199 cases // Food Chem. Toxicol. 2015. Vol. 86. Pp. 282–290 // https://pubmed.ncbi.nlm.nih.gov/26547022/.
50
Zhang Q., et al. Fatal Honey Poisoning Caused by Tripterygium wilfordii Hook F in Southwest China: A Case Series // Wilderness Environ Med. 2016 June 27 // pubmed.ncbi.nlm.nih.gov/27132027.
51
Solanine poisoning // Br. Med. J. 1979. Dec 8. Vol. 2. No. 6203. Pp. 1458–1459; Smith K. A. Horrific Tales of Potatoes That Caused Mass Sickness and Even Death // smitsonianmag.com. 2013. October 21 // smithsonianmag.com/arts-culture/horrific-tales-of-potatoes-that-caused-mass-sickness-and-even-death-3162870/.
52
Question No EFSA-Q-2008-677. Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC) // The EFSA Journal // 2008, July 8 // efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2008.793.
53
Lee Ann Obringer. How Aphrodisiacs Work // HowStuffWorks.com // science.howstuffworks.com/aphrodisiac5.htm.
54
Anthony J Bella, et al. Traditional Plant Aphrodisiacs and Male Sexual Dysfunction // Phytotherapy research, 2013, October 29 // onlinelibrary.wiley.com/doi/10.1002/ptr.5074.
55
Мы нашли распространенные методики и «опасности» в социальных сетях различных «специалистов». В их описании механизм действия БАД, травяных настоек, схем “лечения”, диет часто либо упрощающих, либо, наоборот, придумывающих новые сложные функции для нашего организма. Так что обращаться к подобным методам как к способу улучшения работы организма мы совсем не рекомендуем https://www.sciencedirect.com/science/article/abs/pii/S1548559519301430
56
Chen Y. J., et al. Dietary Broccoli Lessens Development of Fatty Liver and Liver Cancer in Mice Given Diethylnitrosamine and Fed a Western or Control Diet // J. Nutr. 2016. Mar. Vol. 146. No. 3. Pp. 542–550 // doi: 10.3945/jn.115.228148.
57
Boye J. I., Arcand Y. Green Technologies in Food Production and Processing. Springer Science & Business Media. 2012. P. 573.
58
Lin J., et al. Intake of red meat and heterocyclic amines, metabolic pathway genes and bladder cancer risk // Int. J. Cancer. 2012. Oct 15. Vol. 131. No. 8. Pp. 1892–1903 // doi: 10.1002/ijc.27437.
59
Lamichhane D. K., et al. Impact of prenatal exposure to polycyclic aromatic hydrocarbons from maternal diet on birth outcomes: a birth cohort study in Korea // Public Health Nutr. 2016. Oct. Voll. 19. No. 14. Pp. 2562–2571.
60
Ahmad Jayed, et al. Dietary Antioxidants, Circulating Antioxidant Concentrations, Total Antioxidant Capacity, and Risk of All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Observational Studies // Advances in Nutrition, Volume 9, Issue 6, November 2018, Pages 701–716 // doi: doi.org/10.1093/advances/nmy040; Aune D., et al. Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: a systematic review and dose-response meta-analysis of prospective studies // Am J Clin Nutr. 2018 Nov 1 // doi: 10.1093/ajcn/nqy097; Jimi Kim. Antioxidant-Rich Diet, GSTP1 rs1871042 Polymorphism, and Gastric Cancer Risk in a Hospital-Based Case-Control Study // Front. Oncol., 29 January 2021, Sec.Cancer Epidemiology and Prevention // doi.org/10.3389/fonc.2020.596355; Cao L., et al. Dietary Patterns and Risk of Dementia: a Systematic Review and Meta-Analysis of Cohort Studies // Mol Neurobiol. 2016 Nov // doi: 10.1007/s12035-015-9516-4; Davinelli S, et al. Carotenoids and Cognitive Outcomes: A Meta-Analysis of Randomized Intervention Trials // Antioxidants (Basel) // 2021 Feb 2 // doi: 10.3390/antiox10020223.
61
Egner PA, et al. Chlorophyllin intervention reduces aflatoxin-DNA adducts in individuals at high risk for liver cancer // Proc Natl Acad Sci U S A. 2001 Dec 4 // doi: 10.1073/pnas.251536898.
62
Approved additives and E numbers // food.gov.uk/print/pdf/node/847.
63
Omaye S. T. Food and Nutritional Toxicology. CRC Press LLC, 2004. P. 257. ISBN 0-203-48530-0; Why Red M&M’s Disappeared for a Decade // Pricenomics. Retrieved 2016-08-16.
64
Vollmuth TA. Caramel color safety — An update // Food Chem Toxicol // 2018 Jan;111:578–596 // doi: 10.1016/j.fct.2017.12.004.
65
European Food Safety Authority. Re-evaluation of potassium nitrite (E 249) and sodium nitrite (E 250) as food additives // EFSA Journal on the Wiley Online Library // efsa.europa.eu/en/efsajournal/pub/4786.
66
Calafat A. M., et al. Exposure of the U. S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ. Health Perspect. 2008. Jan. Vol. 116. No. 1. Pp. 39–44 // doi: 10.1289/ehp.10753.
67
Cantonwine DE, et al. Bisphenol A and Human Reproductive Health // Expert Rev Obstet Gynecol. 2013 Jul 1;8(4):10.1586/17474108.2013.811939 // doi: 10.1586/17474108.2013.811939.
68
Wu W, et al. Bisphenol A and the Risk of Obesity a Systematic Review With Meta-Analysis of the Epidemiological Evidence // Dose Response. 2020 Apr 9 // doi: 10.1177/1559325820916949; Bao W, et al. Association Between Bisphenol A Exposure and Risk of All-Cause and Cause-Specific Mortality in US Adults // JAMA Netw Open. 2020 // doi:10.1001/jamanetworkopen.2020.11620jamanetwork.com/journals/jamanetworkopen/fullarticle/2769313.
69
Hormann AM, et al. Holding thermal receipt paper and eating food after using hand sanitizer results in high serum bioactive and urine total levels of bisphenol A (BPA) // PLoS One. 2014 Oct 22 // doi: 10.1371/journal.pone.0110509.
70
Lee I, et al. Bisphenol A exposure through receipt handling and its association with insulin resistance among female cashiers // Environ Int. 2018 Aug;117: 268–275 // doi: 10.1016/j.envint.2018.05.013.
71
Receipt-handling may boost cashiers’ exposure to hormone-disrupting chemicals: study // safetyandhealthmagazine.com/articles/18042-receipt-handling-may-boost-cashiers-exposure-to-hormone-disrupting-chemicals-study.
72
Korpela, K., et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children // Nat Commun 7, 2016, January 26 // doi.org/10.1038/ncomms10410.
73
Treatment for Common Illnesses // Centers for Disease Control and Prevention // cdc.gov/antibiotic-use/community/for-patients/common-illnesses/index.html.
74
Probiotics for Gastrointestinal Conditions: A Summary of the Evidence // Am. Fam. Physician. 2017.
75
Pathare P. P. Gut Microbiome: Next Frontier of Precision Medicine // aacc.org/cln/articles/2020/may/gut-microbiome-next-frontier-of-precision-medicine.
76
Venter C., et al. The maternal diet index in pregnancy is associated with offspring allergic diseases: the Healthy Start study // Wiley Online Library, Allergy, 2021, May 3 // http://onlinelibrary.wiley.com/doi/10.1111/all.14949; ACAAI 2019: Healthy, Diverse Diet in Pregnancy May Help Stave Off Allergic Disease in Offspring // Respiratory Medicine, 2019, November 14 // http://practiceupdate.com/content/acaai-2019-healthy-diverse-diet-in-pregnancy-may-help-stave-off-allergic-disease-in-offspring/92486; Mennella JA. Ontogeny of taste preferences: basic biology and implications for health // Am J Clin Nutr. 2014 Mar // doi: 10.3945/ajcn.113.067694.
77
Togo A., Dufour J.-C., Lagier J.-C. et al. Repertoire of human breast and milk microbiota: a systematic review // Future Microbiol. 2019. May. Vol. 14. Pp. 623–641 // doi: 10.2217/fmb-2018-0317.
78
Gómez-Gallego C., et al. Human Breast Milk NMR Metabolomic Profile across Specific Geographical Locations and Its Association with the Milk Microbiota // Nutrients. 2018 Sep 21;10(10):1355 // doi: 10.3390/nu10101355.
79
Vatanen T., et al. Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans // Cell. 2016. April 28 // cell.com/cell/comments/S0092-8674(16)30398-1.
80
Giuliani C., et al. Genetics of Human Longevity Within an Eco-Evolutionary Nature-Nurture Framework // Circ. Res. 2018. Sep. 14. Vol. 123. No. 7. Pp. 745–772 // doi: 10.1161/CIRCRESAHA.118.312562; Biagi E., Rampelli S., Turroni S. et al. The gut microbiota of centenarians: Signatures of longevity in the gut microbiota profile // Mech. Ageing Dev. 2017. Jul. Vol. 165. Pt. B. Pp. 180–184 // doi: 10.1016/j.mad.2016.12.013.
81
López-Otín C., et al. The hallmarks of aging. Cell. 2013. Jun. 6. Vol. 153. No. 6. Pp. 1194–1217 // doi: 10.1016/j.cell.2013.05.039.
82
Biagi E., Candela M., Fairweather-Tait S. et al. Aging of the human metaorganism: the microbial counterpart // Age (Dordr.). 2012. Feb. Vol. 34. No. 1. Pp. 247–267 // doi: 10.1007/s11357-011-9217-5.
83
Cattaneo A., et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly // Neurobiol. Aging. 2017. Jan. Vol. 49. Pp. 60–68 // doi: 10.1016/j.neurobiolaging.2016.08.019.
84
Toro-Martín J. D., et al. Precision Nutrition: A Review of Personalized Nutritional Approaches for the Prevention and Management of Metabolic Syndrome, Nutrients, 2017.
85
Venkataraman A, et al. Variable responses of human microbiomes to dietary supplementation with resistant starch // Microbiome. 2016 Jun 29;4(1):33 // doi: 10.1186/s40168-016-0178-x.
86
Wu L, et al. A Cross-Sectional Study of Compositional and Functional Profiles of Gut Microbiota in Sardinian Centenarians // mSystems. 2019 Jul 9;4(4):e00325-19 // doi: 10.1128/mSystems.00325-19.
87
Perry R. J., et al. Acetate mediates a microbiome-brain-b-cell axis to promote metabolic syndrome // Nature. 2016. Jun. 9. Vol. 534. No. 7606. Pp. 213–217 // doi: 10.1038/nature18309.
88
David LA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014 Jan 23;505(7484):559-63. doi: 10.1038/nature12820.
89
Vanessa K. Ridaura, et.al. Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice // Science, 6 Sep 2013 Vol 341, Issue 6150 // doi: 10.1126/science.1241214
90
Lessa F. C., et al. Burden of Clostridium difficile infection in the United States // N. Engl. J. Med. 2015. Vol. 372. Pp. 825–834; Hall A. J., Curns A. T., McDonald L. C. et al. The roles of Clostridium difficile and norovirus among gastroenteritis-associated deaths in the United States, 1999–2007 // Clin. Infect. Dis. 2012. Vol. 55. Pp. 216–223.
91
Eiseman B., et al. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis // Surgery. 1958. Vol. 44. Pp. 854–859.
92
Процедура ФКТ https://www.cnmt.ru/novyie-texnologii/vosstanovlenie-kishechnoj-mikrobiotyi (на 2022 год процедура не проводится в связи с с изменениями в законодательстве).
93
Borody TJ, et al. Fecal microbiota transplantation: indications, methods, evidence, and future directions // Curr Gastroenterol Rep. 2013 Aug;15(8):337 // doi: 10.1007/s11894-013-0337-1; Borody TJ, et al. Fecal Microbiota Transplantation: Expanding Horizons for Clostridium difficile Infections and Beyond // Antibiotics (Basel). 2015 Jul 6;4(3):254-66 // doi: 10.3390/antibiotics4030254.
94
Marotz CA, Zarrinpar A. Treating Obesity and Metabolic Syndrome with Fecal Microbiota Transplantation // Yale J Biol Med. 2016 Sep 30;89(3):383–388 // ncbi.nlm.nih.gov/pmc/articles/PMC5045147; Vrieze A., Van Nood E., Holleman F. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome // Gastroenterology. 2012. Vol. 143. No. 4. Pp. 913–916.
95
Yu EW, et al. Fecal microbiota transplantation for the improvement of metabolism in obesity: The FMT-TRIM double-blind placebo-controlled pilot trial // PLoS Med. 2020 Mar 9;17(3):e1003051 // doi: 10.1371/journal.pmed.1003051.
96
Ottman N., Reunanen J., Meijerink M. et al. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function // PLoS ONE. 2017. Vol. 12. No. 3. P. e0173004 // doi: 10.1371/journal.pone.0173004.
97
Strandwitz P., et al. GABA Modulating Bacteria — Can Our Bacteria Make Us Depressed? Northeastern University, 2015 // repository.library.northeastern.edu/downloads/neu:m041hd210?datastream_id=content.
98
Steenbergen L., et al. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood // Brain Behav. Immun. 2015. Aug. Vol. 48. No. 258–264 // doi: 10.1016/j.bbi.2015.04.003.
99
Gauci S, et al. Dietary patterns in middle age: effects on concurrent neurocognition and risk of age-related cognitive decline. Nutr Rev. 2022 Apr 8;80(5):1129–1159 // doi: 10.1093/nutrit/nuab047; Matison AP, et al. Associations between nutrition and the incidence of depression in middle-aged and older adults: A systematic review and meta-analysis of prospective observational population-based studies // Ageing Res Rev. 2021 Sep;70:101403 // doi: 10.1016/j.arr.2021.101403.
100
Christine Hall. Startups Focused On Gut Microbiome For Health Clues Raised $1B In VC Funding // December 8, 2020 // news.crunchbase.com/news/startups-focused-on-gut-microbiome-for-health-clues-raised-1b-in-vc-funding.
101
Grigoroff S. Étude sur une lait fermenté comestible. Le «Kissélo mléko» de Bulgarie // Revue Médicale de la Suisse Romande. Genéve. Georg&G., Libraires-Éditeurs. Librairie de L’Université. 1905.
102
Metchnikoff E. Quelques remarques sur le lait aigri. E. Rémy, 30 p., 1908.
103
Scaldaferri F., et al. Role and mechanisms of action of Escherichia coli Nissle 1917 in the maintenance of remission in ulcerative colitis patients: An update // World J Gastroenterol. 2016 Jun 28;22(24):5505-11 // doi: 10.3748/wjg.v22.i24.5505.
104
Lactobacillus (лактобактерии или лактобациллы, род бактерий) // Функциональная гастроэнтерология // gastroscan.ru/handbook/118/1906; Bifidobacterium (бифидобактерии, род бактерий) // Функциональная гастроэнтерология // gastroscan.ru/handbook/118/1822.
105
Scaldaferri F., et al. Role and mechanisms of action of Escherichia coli Nissle 1917 in the maintenance of remission in ulcerative colitis patients: An update. World J Gastroenterol. 2016 Jun 28;22(24):5505-11 // doi: 10.3748/wjg.v22.i24.5505.
106
Luis Villazon. Could two people who aren’t twins have the same DNA? // BBC Science Focus Magazine, 16th April, 2017 // sciencefocus.com/the-human-body/could-two-people-who-arent-twins-have-the-same-dna.
107
Maryam Hussain, et al. High dietary fat intake induces a microbiota signature that promotes food allergy // Food Allergy and Gastrointestinal Disease, Vol. 144, issue 1, P157-170.E8, JULY 01, 2019 // DOI:https://doi.org/10.1016/j.jaci.2019.01.043.
108
Valdes A. M., et al. Role of the gut microbiota in nutrition and health // BMJ. 2018. Vol. 361 // doi: 10.1136/bmj.k2179.
109
Tim Spector. I spent three days as a hunter-gatherer to see if it would improve my gut health // The Conversation UK // theconversation.com/i-spent-three-days-as-a-hunter-gatherer-to-see-if-it-would-improve-my-gut-health-78773.
110
Allegretti J. R., et al. Effects of Fecal Microbiota Transplantation With Oral Capsules in Obese Patients // Clin. Gastroenterol. Hepatol. 2020 Apr. Vol. 18. No. 4. Pp. 855–863.e2 // doi: 10.1016/j.cgh.2019.07.006.
111
Duan Y, et.al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease // Nature. 2019 Nov;575(7783):505–511 // doi: 10.1038/s41586-019-1742-x.
112
Chemical elements listed by their presence in human body // lenntech.com/periodic-chart-elements/human-body.htm.
113
Уточнение. В биологии классификация макро- и микроэлементов несколько иная. Макроэлементами считаются те, содержание которых в живых организмах составляет больше 0,001% (примерно 0,7 г или более), а микроэлементами — те, которых менее 0,7 г. Кислород, углерод, водород и азот занимают особое положение: никакая жизнь без них невозможна в принципе.
114
Здоровое питание — здоровые кости. Питание и здоровье костей в любом возрасте // http://worldosteoporosisday.org.
115
Namgung R., Tsang R. C. Bone in the pregnant mother and newborn at birth // Clin. Chim. Acta. 2003. Vol. 333. Pp. 1–11.
116
Javaid M. K., Crozier S. R., Harvey N. C. et al, Princess Anne Hospital Study G. Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study // Lancet. 2006. Vol. 367. Pp. 36–43.
117
Nicklas T. A., O’Neil C. E., Fulgoni V. L. 3rd. The role of dairy in meeting the recommendations for shortfall nutrients in the American diet // J. Am. Coll. Nutr. 2009. Feb. Vol. 28 Suppl. 1. Pp. 73S–81S.
118
Barrett-Connor E., Chang J. C., Edelstein S. L. Coffee-associated osteoporosis offset by daily milk consumption. The Rancho Bernardo Study // JAMA. 1994. Vol. 271. Pp. 280–283; Hallstrom H., Wolk A., Glynn A., Michaelsson K. Coffee, tea and caffeine consumption in relation to osteoporotic fracture risk in a cohort of Swedish women // Osteoporos. Int. 2006. Vol. 17. Pp. 1055–1064.
119
Недогода С. В. Роль препаратов магния в ведении пациентов терапевтического профиля // Лечащий врач. 2009. № 6.
120
Rosanoff A. Magnesium and hypertension // Clin. Calcium. 2005. Vol. 15. Р. 255–260.
121
Rayssiguier Y., Libako P., Nowacki W. et al. Magnesium deficiency and metabolic syndrome: stress and inflammation may reflect calcium activation // Magnes. Res. 2010. Vol. 23, No. 2. Рp. 154–159.
122
Jiang L., He P., Chen J. et al. Magnesium Levels in Drinking Water and Coronary Heart Disease Mortality Risk: A Meta-Analysis // Nutrients. 2016. Jan. 2. Vol. 8. No. 1.
123
JPierce. Human body: Enough phosphorous for 2200 matches and…// Warm Home Cool Planet by the Cambridge Energy Alliance (CEA) // warmhomecoolplanet.org/human-body-phosphorous-2200-matches.
124
Veronica Fiorito, et.al. The Multifaceted Role of Heme in Cancer // Front. Oncol., 15 January 2020, Sec.Cancer Metabolism// https://doi.org/10.3389/fonc.2019.01540.
125
Prasad A. S., et.al. Zinc metabolism in patients with the syndrome of iron deficiency anemia, hypogonadism and dwarfism // J. Lab. Clin. Med. 1963. Vol. 61. Pp. 537–549.
126
“Security guard” zinc is off-duty in diabetes // news.umich.edu/qsecurity-guardqzinc-is-off-duty-in-diabetes.
127
Tyrosine Hydroxylase Deficiency. Rare Disease Database // rarediseases.org/rare-diseases/tyrosine-hydroxylase-deficiency.
128
Squitti R., et.al. Copper dyshomeostasis in Wilson disease and Alzheimer’s disease as shown by serum and urine copper indicators // J. Trace Elem. Med. Biol. 2018. Jan. Vol. 45. No. 181–188 // doi: 10.1016/j.jtemb.2017.11.005.
129
Brewer G. J. Copper-2 Ingestion, Plus Increased Meat Eating Leading to Increased Copper Absorption, Are Major Factors Behind the Current Epidemic of Alzheimer’s Disease // Nutrients. 2015. Dec. 2. Vol. 7. No. 12. Pp. 10053–10064 // doi: 10.3390/nu7125513; Copper in Drinking Water // ncbi.nlm.nih.gov/books/NBK225402.
130
Young N., et.al. Community water fluoridation and health outcomes in England: a cross-sectional study // Community Dent. Oral. Epidemiol. 2015. Dec. Vol. 43. No. 6. Pp. 550–559 // doi: 10.1111/cdoe.12180; Malin A. J., Till C. Exposure to fluoridated water and attention deficit hyperactivity disorder prevalence among children and adolescents in the United States: an ecological association // Environ. Health. 2015. Feb. 27. Vol. 14. P. 17 // doi: 10.1186/s12940-015-0003-1.
131
Felker P., et.al. Concentrations of thiocyanate and goitrin in human plasma, their precursor concentrations in brassica vegetables, and associated potential risk for hypothyroidism // Nutr. Rev. 2016. Apr. Vol. 74. No. 4. Pp. 248–258 // doi: 10.1093/nutrit/nuv110.
132
Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества — РТС-тендер // https://www.rts-tender.ru/poisk/sanpin/2-1-4-1116-02.
133
Wichman J., et.al. Selenium Supplementation Significantly Reduces Thyroid Autoantibody Levels in Patients with Chronic Autoimmune Thyroiditis: A Systematic Review and Meta-Analysis // Thyroid. 2016. Dec. Vol. 26. No. 12. Pp. 1681–1692.
134
Marshall J. R., et al. Selenomethionine and methyl selenocysteine: multiple-dose pharmacokinetics in selenium-replete men // Oncotarget. 2017. Apr. 18. Vol. 8. No. 16. Pp. 26312–26322.
135
Clark LC, et.al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial // Nutritional Prevention of Cancer Study Group. JAMA. 1996 Dec 25;276(24):1957-63 // pubmed.ncbi.nlm.nih.gov/8971064.
136
Lippman S. M., et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT) // JAMA. 2009. Vol. 301. Pp. 39–51.
137
Vincent J. B., et al. Chromium is not an essential trace element for mammals: effects of a «low-chromium» diet // Journal of Biological Inorganic Chemistry. 2011. March. Vol. 16. No. 3. Pp. 381–390.
138
Blech M. F., et al. Treatment of deep wounds with loss of tissue. Value of a 3 percent boric acid solution // Presse Med. 1990. Jun 2. Vol. 19. No. 22. Pp. 1050–1052.
139
Nielsen F. H., et al. Effect of dietary boron on mineral, estrogen, and testosterone metabolism in postmenopausal women // FASEB J. 1987. Nov. Vol. 1. No. 5. Pp. 394–397; Naghii M. R., et al. Comparative effects of daily and weekly boron supplementation on plasma steroid hormones and proinflammatory cytokines // J. Trace Elem. Med. Biol. 2011. Jan. Vol. 25. No. 1. Pp. 54–58 // doi: 10.1016/j.jtemb.2010.10.001.
140
Miljkovic D., et al. Calcium fructoborate: plant-based dietary boron for human nutrition // J. Diet. Suppl. 2009. Vol. 6. No. 3. Pp. 211–226; Scorei R., et al. A double-blind, placebo-controlled pilot study to evaluate the effect of calcium fructoborate on systemic inflammation and dyslipidemia markers for middle-aged people with primary osteoarthritis // Biol. Trace Elem. Res. 2011. Dec. Vol. 144. No. 1–3. Pp. 253–263.
141
Goodman D. L., et al. Chronic urticaria exacerbated by the antioxidant food preservatives, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) // J. Allergy Clin. Immunol. 1990. Oct. Vol. 86. No. 4 Pt. 1. Pp. 570–575; Juhlin L. Recurrent urticaria: clinical investigation of 330 patients // Br. J. Dermatol. 1981. Apr. Vol. 104. No. 4. Pp. 369–381.
142
Cade J. F. Lithium Salts in the Treatment of Psychotic Excitement. 1949 // Bull. World Health Organ. 2000. Vol. 78. No. 4. Pp. 518–520.
143
Sugawara N, et al. Lithium in tap water and suicide mortality in Japan // Int J Environ Res Public Health. 2013 Nov 12;10(11):6044-8 // doi: 10.3390/ijerph10116044.
144
Tsuyoshi Kugimiya, et al. Lithium in drinking water and suicide prevention: The largest nationwide epidemiological study from Japan // Bipolar Disorders, 2021 // onlinelibrary.wiley.com/doi/epdf/10.1111/bdi.12983.
145
Zarse K., Terao T., Tian J. et al. Low-dose lithium uptake promotes longevity in humans and metazoans // Eur. J. Nutr. 2011. Aug. Vol. 50. No. 5. Pp. 387–389 // doi: 10.1007/s00394-011-0171-x.
146
Eiff J., et.al. Multicomponent analysis of fat- and water-soluble vitamins and auxiliary substances in multivitamin preparations by qNMR // J. Agric. Food Chem. 2015. Apr. 1. Vol. 63. No. 12. Pp. 3135–3143 // doi: 10.1021/acs.jafc.5b00087.
147
Bird J. K., et.al. Risk of Deficiency in Multiple Concurrent Micronutrients in Children and Adults in the United States // Nutrients. 2017. Jun. 24. Vol. 9. No. 7 // doi: 10.3390/nu9070655.
148
Kim J, et.al. Association of Multivitamin and Mineral Supplementation and Risk of Cardiovascular Disease: A Systematic Review and Meta-Analysis // Circ Cardiovasc Qual Outcomes. 2018 Jul;11(7):e004224 // doi: 10.1161/CIRCOUTCOMES.117.004224.
149
Helen Macpherson, et.al. Multivitamin-multimineral supplementation and mortality: a meta-analysis of randomized controlled trials // The American Journal of Clinical Nutrition, Volume 97, Issue 2, February 2013, Pages 437–444 // https://doi.org/10.3945/ajcn.112.049304; Save Your Money: Vast Majority Of Dietary Supplements Don’t Improve Heart Health or Put Off Death // hopkinsmedicine.org/news/newsroom/news-releases/save-your-money-vast-majority-of-dietary-supplements-dont-improve-heart-health-or-put-off-death.
150
McClendon J. F., Shuck C. The presence of anti-ophthalmic vitamin and the absence of anti-richitic vitamin in dried spinach. First Published February 1, 1923 // doi.org/10.3181/00379727-20-139; Rosenfeld L. Vitamine-vitamin. The early years of discovery. Clin Chem. 1997 Apr;43(4):680-5 // pubmed.ncbi.nlm.nih.gov/9105273.
151
Villazon L. Do carrots really help you see in the dark? // Science Focus // sciencefocus.com/the-human-body/do-carrots-really-help-you-see-in-the-dark/.
152
Цикл Кребса состоит из восьми последовательных реакций, в результате которых одна молекула ацетилкофермента А (ацетил-КоА) «сгорает» до воды и углекислого газа. Освобождающаяся энергия сосредоточивается в молекуле АТФ. Прим. ред.
153
Remedia Soy Formula Suspected in Brain Damage // haaretz.com/1.4754916; Mimouni-Bloch A., et al. Thiamine deficiency in infancy: long-term follow-up // Pediatr. Neurol. 2014. Sep. Vol, 51. No. 3. Pp. 311–316 // doi: 10.1016/j.pediatrneurol.2014.05.010.
154
Barennes H, et.al. Postpartum traditions and nutrition practices among urban Lao women and their infants in Vientiane, Lao PDR // Eur J Clin Nutr. 2009 Mar;63(3):323-31 // doi: 10.1038/sj.ejcn.1602928; Donna Kelly. LAOS: What People Cannot Eat is of Great Importance to Women — Part 2 // ipsnews.net/2009/09/laos-what-people-cannot-eat-is-of-great-importance-to-women-part-2.
155
McNulty H., Scott J. M. Intake and status of folate and related B-vitamins: considerations and challenges in achieving optimal status // Br. J. Nutr. 2008. Jun. Vol. 99 Suppl. 3. Pp. S48–S54 // doi: 10.1017/S0007114508006855.
156
Беззубов А. Д. Витамины для блокадного Ленинграда // Химия и жизнь. 1985. № 1.
157
Schandelmaier S, et.al. Niacin for primary and secondary prevention of cardiovascular events // Cochrane Database of Systematic Reviews 2017, Issue 6. Art. No.: CD009744 // DOI: 10.1002/14651858.CD009744.pub2.
158
Smith KE, et.al. Metabolic precursors in astrophysical ice analogs: implications for meteorites and comets // Chem Commun (Camb). 2015 Jul 28;51(59):11787-90 // doi: 10.1039/c5cc03272e; Bill Steigerwald. Vitamin B3 Might Have Been Made in Space, Delivered to Earth by Meteorites // NASA Astrobiology // astrobiology.nasa.gov/news/vitamin-b3-might-have-been-made-in-space-delivered-to-earth-by-meteorites.
159
Patassini S,et.al. Cerebral Vitamin B5 (D-Pantothenic Acid) Deficiency as a Potential Cause of Metabolic Perturbation and Neurodegeneration in Huntington's Disease // Metabolites. 2019 Jun 11;9(6):113 // doi: 10.3390/metabo9060113.
160
Li D., Radulescu A., Shrestha R. T. Association of Biotin Ingestion With Performance of Hormone and Nonhormone Assays in Healthy Adults // JAMA. 2017. Sep. 26. Vol. 318. No. 12. Pp. 1150–1160 // doi: 10.1001/jama.2017.13705.
161
Brian Resnick. Millions of women take folic acid for a healthier pregnancy. Thank Lucy Wills // vox.com/science-and-health/2019/5/10/18563248/lucy-wills-google-doodle-folic-acid-wills-factor.
162
Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. MRC Vitamin Study Research Group // Lancet. 1991. Jul. 20. Vol. 338. No. 8760. Pp. 131–137; Czeizel A. E., et.al. Population-based case control study of folic acid supplementation during pregnancy // Teratology. 1996. Jun. Vol. 53. No. 6. Pp. 345–351 // doi: 10.1002/(SICI)1096-9926(199606)53:6<345::AID-TERA5>3.0.CO;2-Z.
163
Копытов В. С. Обогащение муки и других продуктов переработки зерна витаминными добавками // http://slideshare.net/AltaiFlourMills/ss-16519849.
164
Choi S.-W., Mason J. B. Folate status: effects on pathways of colorectal carcinogenesis // J. Nutr. 2002. Aug. Vol. 132. No. 8 Suppl. Pp. 2413S–2418S // doi: 10.1093/jn/132.8.2413S; Blount B. C., et.al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage // Proc. Natl. Acad. Sci. USA. 1997. Apr. 1. Vol. 94. No. 7. Pp. 3290–3295 // doi: 10.1073/pnas.94.7.3290.
165
Mason J. B., Tang S. Y. Folate status and colorectal cancer risk: A 2016 update // Mol. Aspects Med. 2017. Feb. Vol. 53. No. 73–79 // doi: 10.1016/j.mam.2016.11.010; Zhao Y., et al. Folate intake, serum folate levels and esophageal cancer risk: an overall and dose-response meta-analysis // Oncotarget. 2017. Feb. 7. Vol. 8. No. 6. Pp. 10458–10469.
166
R.B.WODWARD. THE TOTAL SYNTHESIS OF VITAMIN B12 // Department of Chemistry, HarvardUniversity, Cambridge, Mas.02138, USA// publications.iupac.org/pac/1973/pdf/3301x0145.pdf.
167
Watanabe F, et.al. Pseudovitamin B(12) is the predominant cobamide of an algal health food, spirulina tablets // J Agric Food Chem. 1999 Nov;47(11):4736-41 // doi: 10.1021/jf990541b.
168
Lind J. A Treatise on the Scurvy. Gryphon Editions. Birmingham, AL: Gryphon Editions, 1980. First Edition; First Printing. Hardcover.
169
Ziegler S. J., et.al. Fast and Selective Assay of l-Ascorbic Acid in Rose Hips by RP-HPLC Coupled with Electrochemical and/or Spectrophotometric Detection // Planta Med. 1986. Oct. Vol. 5. Pp. 383–387 // doi: 10.1055/s-2007-969192.
170
Lewis Cantley, Jihye Yun, Intravenous High-Dose Vitamin C in Cancer Therapy, 2020, cancer.gov/research/key-initiatives/ras/ras-central/blog/2020/yun-cantley-vitamin-c.
171
Shenoy N., et.al. Ascorbic Acid in Cancer Treatment: Let the Phoenix Fly // Cancer Cell. 2018. Nov. 12. Vol. 34. No. 5. Pp. 700–706 // doi: 10.1016/j.ccell.2018.07.014.
172
Liu F., et.al. Intravenous high-dose vitamin C for the treatment of severe COVID-19: study protocol for a multicentre randomised controlled trial // BMJ Open. 2020. Jul. 8. Vol. 10. No. 7. P. e039519 // doi: 10.1136/bmjopen-2020-039519.
173
COVID-19 rapid guideline: vitamin D // NICE guideline. 2020. Dec. 17 // nice.org.uk/guidance/ng187.
174
Mowery D. C. Ivory Tower and Industrial Innovation. Stanford University Press, 2004. Pp. 39–40.
175
Bergman GJ, et al. Efficacy of vitamin D3 supplementation in preventing fractures in elderly women: a meta-analysis // Curr Med Res Opin. 2010 May; 26(5):1193-201 // doi: 10.1185/03007991003659814; Wang L, et al. Circulating Vitamin D Levels and Alzheimer's Disease: A Mendelian Randomization Study in the IGAP and UK Biobank // J Alzheimers Dis. 2020;73(2):609–618 // doi: 10.3233/JAD-190713; Bellan M, et al. Pathophysiological Role and Therapeutic Implications of Vitamin D in Autoimmunity: Focus on Chronic Autoimmune Diseases // Nutrients. 2020 Mar 17;12(3):789 // doi: 10.3390/nu12030789.
176
van Groningen L., et al. Cholecalciferol loading dose guideline for vitamin D-deficient adults // Eur. J. Endocrinol. 2010. Apr. Vol. 162. No. 4. Pp. 805–811 // doi: 10.1530/EJE-09-0932.
177
Dietary reference values for vitamin D. 2016 // efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2016.4547.
178
van Ballegooijen A. J., et al. The Synergistic Interplay between Vitamins D and K for Bone and Cardiovascular Health: A Narrative Review // Int. J. Endocrinol. 2017. Vol. 7454376 // doi: 10.1155/2017/7454376.
179
Tsou P., Wu C.-J. Serum Vitamin E Levels of Adults with Nonalcoholic Fatty Liver Disease: An Inverse Relationship with All-Cause Mortality in Non-Diabetic but Not in Pre-Diabetic or Diabetic Subjects // J. Clin. Med. 2019. Jul. 19. Vol. 8. No. 7. P. 1057 // doi: 10.3390/jcm8071057.
180
Kasahara T., Kato T. Nutritional biochemistry: A new redox-cofactor vitamin for mammals // Nature. 2003. Apr. 24. Vol. 422. No. 6934. P. 832 // doi: 10.1038/422832a.
181
Scientific Opinion on the safety of caffeine // efsa.europa.eu/en/efsajournal/pub/4102.
182
Papadopoulou E., et al. Maternal caffeine intake during pregnancy and childhood growth and overweight: results from a large Norwegian prospective observational cohort study // BMJ Open. 2018. Apr. 23. Vol. 8. No. 3. P. e018895 // doi: 10.1136/bmjopen-2017-018895.
183
Coping Strategies for Shift Work Disorder // sleepfoundation.org/shift-work-disorder/tips/coping-strategies.
184
Ker K, et al. Caffeine for preventing injuries and errors in shift workers // cochrane.org/CD008508/INJ_caffeine-for-preventing-injuries-and-errors-in-shift-workers.
185
The effects of shift work on health, iosh.com/media/1572/the-effects-of-shift-work-on-health-summary-report.pdf
186
Dranoff J. A. Coffee Consumption and Prevention of Cirrhosis: In Support of the Caffeine Hypothesis // Gene Expr. 2018. Mar. 21. Vol. 18. No. 1. Pp. 1–3
187
Сoffee consumption and bone health // coffeeandhealth.org/hcp-resources/factsheet-for-professionals-5/.
188
Vinson J. A., et al. V. Randomized, double-blind, placebo-controlled, linear dose, crossover study to evaluate the efficacy and safety of a green coffee bean extract in overweight subjects // Diabetes Metab. Syndr. Obes. 2012. Vol. 5. Pp. 21–27 // doi: 10.2147/DMSO.S27665.
189
Revuelta-Iniesta R, Al-Dujaili EA. Consumption of green coffee reduces blood pressure and body composition by influencing 11β-HSD1 enzyme activity in healthy individuals: a pilot crossover study using green and black coffee // Biomed Res Int. 2014;2014:482704 // doi: 10.1155/2014/482704.
190
Naylor LH, et al. Acute dose-response effect of coffee-derived chlorogenic acids on the human vasculature in healthy volunteers: a randomized controlled trial // Am J Clin Nutr. 2021 Feb 2;113(2):370–379 // doi: 10.1093/ajcn/nqaa312;
191
Umeda M, et al. Preventive effects of tea and tea catechins against influenza and acute upper respiratory tract infections: a systematic review and meta-analysis // Eur J Nutr. 2021 Dec;60(8):4189–4202 // doi: 10.1007/s00394-021-02681-2; Unno K, Nakamura Y. Green Tea Suppresses Brain Aging // Molecules, 2021 Aug 12;26(16):4897 // doi: 10.3390/molecules26164897; Huang J, et al. The anti-obesity effects of green tea in human intervention and basic molecular studies // Eur J Clin Nutr. 2014 Oct;68(10):1075-87 // doi: 10.1038/ejcn.2014.143; Xu R, et al. Effect of green tea consumption on blood lipids: a systematic review and meta-analysis of randomized controlled trials // Nutr J. 2020 May 20;19(1):48 // doi: 10.1186/s12937-020-00557-5.
192
Igho-Osagie E, et al. Short-Term Tea Consumption Is Not Associated with a Reduction in Blood Lipids or Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials // J Nutr. 2020 Dec 10;150(12):3269–3279 // doi: 10.1093/jn/nxaa295. PMID: 33188386; Asbaghi O, et al. Effect of green tea on glycemic control in patients with type 2 diabetes mellitus: A systematic review and meta-analysis // Diabetes Metab Syndr. 2021 Jan-Feb;15(1):23–31 // doi: 10.1016/j.dsx.2020.11.004; Filippini T, et al. Green tea (Camellia sinensis) for the prevention of cancer // Cochrane Database Syst Rev. 2020 Mar 2;3(3):CD005004 // doi: 10.1002/14651858.CD005004.pub3; Filippini T, et al. Green tea (Camellia sinensis) for the prevention of cancer // Cochrane Database Syst Rev. 2020 Mar 2;3(3):CD005004 // doi: 10.1002/14651858.CD005004.pub3.
193
The Coffee Revolt of 1674: When Women Campaigned to Prohibit “That Newfangled, Abominable, Heathenish Liquor Called COFFEE” // https://www.openculture.com/2017/04/the-coffee-revolt-of-1674.html
194
Troyer R. J., Markle G. E. Coffee Drinking: An Emerging Social Problem // Social Problems. 1984. Apr. Vol. 31. No. 4. Pp. 403–416 // Oxford University Press // cnn.com/2015/08/14/health/coffee-health/index.html.
195
Coffee Drinking Among Children, 2 Sep 1927, https://www.science.org/doi/10.1126/science.66.1705.xii.t
196
Jick H., et al. Coffee and Myocardial Infarction // N. Engl. J. Med. 1973. July 12. Vol. 289. Pp. 63–67 // doi: 10.1056/NEJM197307122890203.
197
Klatsky A. L., et al. Coffee Drinking Prior to Acute Myocardial Infarction. Results From the Kaiser-Permanente Epidemiologic Study of Myocardial Infarction // JAMA. 1973. Vol. 226. No. 5. Pp. 540–543 // doi:10.1001/jama.1973.03230050018005.
198
Robertson D., et al. Effects of Caffeine on Plasma Renin Activity, Catecholamines and Blood Pressure // N. Engl. J. Med. 1978. Jan. 26. Vol. 298. Pp. 181–186 // DOI: 10.1056/NEJM197801262980403.
199
Heyden S, et al. Coffee consumption and mortality. Total mortality, stroke mortality, and coronary heart disease mortality // Arch Intern Med. 1978 Oct;138(10):1472-5 // pubmed.ncbi.nlm.nih.gov/708166.
200
Casiglia E, et al. Unexpected effects of coffee consumption on liver enzymes // Eur J Epidemiol. 1993 May;9(3):293-7 // doi: 10.1007/BF00146266; G Corrao et.al., The effect of drinking coffee and smoking cigarettes on the risk of cirrhosis associated with alcohol consumption. A case-control study. Provincial Group for the Study of Chronic Liver Disease, 1994, Eur J Epidemiol., https://pubmed.ncbi.nlm.nih.gov/7672043/.
201
Drinking any type of coffee associated with reduced risk of chronic liver disease // University of Southampton, Published: 22 June 2021// southampton.ac.uk/news/2021/06/coffee-reduced-liver-disease.page.
202
Whitfield JB, et al. Genom ALC Consortium. Obesity, Diabetes, Coffee, Tea, and Cannabis Use Alter Risk for Alcohol-Related Cirrhosis in 2 Large Cohorts of High-Risk Drinkers // Am J Gastroenterol. 2021 Jan 1;116(1):106–115 // doi: 10.14309/ajg.0000000000000833; Alferink LJM, et al. Coffee and herbal tea consumption is associated with lower liver stiffness in the general population: The Rotterdam study // J Hepatol. 2017 Aug;67(2):339–348// doi: 10.1016/j.jhep.2017.03.013; Jin X, Zheng RH, Li YM. Green tea consumption and liver disease: a systematic review // Liver Int. 2008 Aug;28(7):990-6 // doi: 10.1111/j.1478–3231.2008.01776.x; Sueoka N, et al. A new function of green tea: prevention of lifestyle-related diseases // Ann N Y Acad Sci. 2001 Apr;928:274-80 // doi: 10.1111/j.1749–6632.2001.tb05656.x; St Pyrek J. Constituents of human meconium-III. Identification of 3,20-dihydroxypregnan-21-oic acids // Steroids, 1987 Apr-May;49(4–5):313-33 // doi: 10.1016/0039-128x(87)90007-9.
203
Mostofsky E., et al. Habitual Coffee Consumption and Risk of Heart Failure: A Dose — Response Meta-Analysis // Circ. Heart Fail. 2012. Jul. 1. Vol. 5. No. 4. Pp. 401–405 // doi: 10.1161/CIRCHEARTFAILURE.112.967299.
204
Ming Ding, et al. Long-Term Coffee Consumption and Risk of Cardiovascular Disease.A Systematic Review and a Dose — Response Meta-Analysis of Prospective Cohort Studies // Circulation. February 11, 2014, Vol 129, Issue 6 // https://doi.org/10.1161/CIRCULATIONAHA.113.005925.
205
Harvard T.H. The Nutrition Source. Alcohol: Balancing Risks and Benefits // hsph.harvard.edu/nutritionsource/healthy-drinks/drinks-to-consume-in-moderation/alcohol-full-story.
206
CDC. Dietary Guidelines for Alcohol // https://www.cdc.gov/alcohol/fact-sheets/moderate-drinking.htm.
207
World Health Organization. Alcohol // who.int/health-topics/alcohol#tab=tab_1.
208
Hinkle SN, et al. Association of Habitual Alcohol Consumption With Long-term Risk of Type 2 Diabetes Among Women With a History of Gestational Diabetes // JAMA Netw Open. 2021 Sep 1;4(9):e2124669 // doi: 10.1001/jamanetworkopen.2021.24669; Figueiredo JC, et al. Sex and ethnic/racial-specific risk factors for gallbladder disease // BMC Gastroenterol. 2017 Dec 8;17(1):153 // doi: 10.1186/s12876-017-0678-6; Kerr WC, et al. Lifetime Alcohol Use Patterns and Risk of Diabetes Onset in the National Alcohol Survey // Alcohol Clin Exp Res. 2019 Feb;43(2):262–269 // doi: 10.1111/acer.13924.
209
Bakhshi S, While AE. Health professionals' alcohol-related professional practices and the relationship between their personal alcohol attitudes and behavior and professional practices: a systematic review // Int J Environ Res Public Health. 2013 Dec 23;11(1):218-48 // doi: 10.3390/ijerph110100218.
210
Joos L, Glazemakers I, Dom G. Alcohol Use and Hazardous Drinking among Medical Specialists // Eur Addict Res 2013;19:89–97 // doi: 10.1159/000341993.
211
Harvard T.H. Alcohol: Balancing Risks and Benefits // hsph.harvard.edu/nutritionsource/healthy-drinks/drinks-to-consume-in-moderation/alcohol-full-story.
212
William J. Cromie. Wine molecule slows aging process: Scientists drink to that // news.harvard.edu/gazette/story/2003/09/wine-molecule-slows-aging-process-2.
213
Terzibasi E., et al. The short-lived fish Nothobranchius furzeri as a new model system for aging studies // Exp. Gerontol. 2007. Vol. 42. Pp. 81–89.
214
Nadon N. L., et al. NIA Interventions Testing Program: Investigating Putative Aging Intervention Agents in a Genetically Heterogeneous Mouse Model. // Lancet. 2017. July 01. Vol. 21. Pp. 3–4.
215
Banaszewska B, et al. Effects of Resveratrol on Polycystic Ovary Syndrome: A Double-blind, Randomized, Placebo-controlled Trial // J Clin Endocrinol Metab. 2016 Nov;101(11):4322–4328 // doi: 10.1210/jc.2016–1858.
216
de Ligt M, Bruls YMH, et al. Resveratrol improves ex vivo mitochondrial function but does not affect insulin sensitivity or brown adipose tissue in first degree relatives of patients with type 2 diabetes // Mol Metab. 2018 Jun;12:39–47 // doi: 10.1016/j.molmet.2018.04.004.
217
Zhu X, et al. Effects of resveratrol on glucose control and insulin sensitivity in subjects with type 2 diabetes: systematic review and meta-analysis // Nutr Metab (Lond). 2017 Sep 22;14:60 // doi: 10.1186/s12986-017-0217-z.
218
Vitaglione P, et al. Bioavailability of trans-resveratrol from red wine in humans // Mol Nutr Food Res. 2005 May;49(5):495–504 // doi: 10.1002/mnfr.200500002.
219
Semba R. D., et al. Resveratrol Levels and All-Cause Mortality in Older Community-Dwelling Adults // JAMA Intern Med. 2014. Vol. 174. No. 7. Pp. 1077–1084 // doi:10.1001/jamainternmed.2014.1582.
220
Mews P, et al. Alcohol metabolism contributes to brain histone acetylation // Nature. 2019 Oct;574(7780):717–721 // doi: 10.1038/s41586-019-1700-7.
221
Painter K, Cordell BJ, Sticco KL. Auto-brewery Syndrome // 2022 May 1. In: StatPearls Publishing; 2022 Jan // pubmed.ncbi.nlm.nih.gov/30020718/; Akhavan BJ, et al. Drunk Without Drinking: A Case of Auto-Brewery Syndrome // ACG Case Rep J. 2019 Sep 9;6(9):e00208 // doi: 10.14309/crj.0000000000000208; Malik F, Wickremesinghe P, Saverimuttu J. Case report and literature review of auto-brewery syndrome: probably an underdiagnosed medical condition // BMJ Open Gastroenterol. 2019 Aug 5;6(1):e000325 // doi: 10.1136/bmjgast-2019-000325.
222
Malik F., et al. Case report and literature review of auto-brewery syndrome: probably an underdiagnosed medical condition // BMJ Open Gastroenterol. 2019. Vol. 6. No. 1. P. e000325 // doi: 10.1136/bmjgast-2019-000325.
223
Chazelas E., et al. Sugary drink consumption and risk of cancer: results from NutriNet-Santé prospective cohort // BMJ. 2019. Vol. 366 // doi: 10.1136/bmj.l2408.
224
Basu S., et al. The Relationship of Sugar to Population-Level Diabetes Prevalence: An Econometric Analysis of Repeated Cross-Sectional Data // PLoS One. 2013. Vol. 8. No. 2. P. e57873 // doi: 10.1371/journal.pone.0057873.
225
A Bahador, et al. Effect of xylitol on cariogenic and beneficial oral streptococci: a randomized, double-blind crossover trial // Iran J Microbiol. 2012 Jun; 4(2): 75–81 // ncbi.nlm.nih.gov/pmc/articles/PMC3434645.
226
Ingrid Toews, et al. Association between intake of non-sugar sweeteners and health outcomes: systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies // BMJ, 2019 // ncbi.nlm.nih.gov/pmc/articles/PMC6313893/; Hongyi Li, et al. Association between intake of sweetened beverages with all-cause and cause-specific mortality: a systematic review and meta-analysis // Journal of Public Health, 09 April 2021 // doi.org/10.1093/pubmed/fdab069; Common Cancer Myths and Misconceptions (NIH 2018), http://cancer.gov/about-cancer/causes-prevention/risk/myths; Brown RJ, et al. Artificial sweeteners: a systematic review of metabolic effects in youth // Int J Pediatr Obes. 2010 Aug;5(4):305-12 // doi: 10.3109/17477160903497027; Rogers PJ, et al. Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies // Int J Obes (Lond). 2016 Mar;40(3):381-94 // doi: 10.1038/ijo.2015.177.
227
Williams S. E., et al. ASPM sustains postnatal cerebellar neurogenesis and medulloblastoma growth in mice // Development. 2015. Nov. 15. Vol. 142. No. 22. Pp. 3921–3932 // doi: 10.1242/dev.124271.
228
Chakravarthy MV, Booth FW. Eating, exercise, and "thrifty" genotypes: connecting the dots toward an evolutionary understanding of modern chronic diseases // J Appl Physiol (1985). 2004 Jan;96(1):3-10 // doi: 10.1152/japplphysiol.00757.2003.
229
Mathias Rask-Andersen, et al. Gene-environment interaction study for BMI reveals interactions between genetic factors and physical activity, alcohol consumption and socioeconomic status // PLOS Genetics, 2017; 13 (9): e1006977 // DOI: 10.1371/journal.pgen.1006977.
230
Mao L., et. al. Population differentiation in allele frequencies of obesity-associated SNPs // BMC Genomics. 2017. Nov. 10. Vol. 18. No. 1. P. 861 // doi: 10.1186/s12864-017-4262-9.
231
McClure AC, et al. Receptivity to television fast-food restaurant marketing and obesity among U.S. youth // Am J Prev Med. 2013 Nov;45(5):560-8 // doi: 10.1016/j.amepre.2013.06.011; phttps://pubmed.ncbi.nlm.nih.gov/24139768/.
232
Gilbert-Diamond D., Emond J. A., Lansigan R. K. et al. Television food advertisement exposure and FTO rs9939609 genotype in relation to excess consumption in children // Int. J. Obes. (Lond). 2017. Jan. Vol. 41. No. 1. Pp. 23–29 // doi: 10.1038/ijo.2016.163.
233
Kilpeläinen T. O., et al. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children // PLoS Med. 2011. Nov. Vol. 8. No. 11. P. e1001116 // doi: 10.1371/journal.pmed.1001116; Xiang L., Wu H., Pan A. et al. FTO genotype and weight loss in diet and lifestyle interventions: a systematic review and meta-analysis // Am. J. Clin. Nutr. 2016. Apr. Vol. 103. No. 4. Pp. 1162–1170 // doi: 10.3945/ajcn.115.123448.
234
Graff M., et al. Genome-wide physical activity interactions in adiposity — A meta-analysis of 200,452 adults // PLoS Genet. 2017. Apr. 27. Vol. 13. No. 4. P. e1006528 // doi: 10.1371/journal.pgen.1006528.
235
de Luis D. A., et al. RS9939609 FTO gene variant modified weight loss and insulin resistance after a partial meal-replacement hypocaloric diet // Eur. Rev. Med. Pharmacol. Sci. 2020. May. Vol. 24. No. 10. Pp. 5573–5581 // doi: 10.26355/eurrev_202005_21343.
236
Samaan Z., et al. The protective effect of the obesity-associated rs9939609 A variant in fat mass- and obesity-associated gene on depression // Mol. Psychiatry. 2013. Dec. Vol. 18. No. 12. Pp. 1281–1286 // doi: 10.1038/mp.2012.160; Samaan Z, et al. The protective effect of the obesity-associated rs9939609. A variant in fat mass- and obesity-associated gene on depression // Mol Psychiatry. 2013 Dec;18(12):1281-6 // doi: 10.1038/mp.2012.160; Roetker NS, et al. Multigene interactions and the prediction of depression in the Wisconsin Longitudinal Study // BMJ Open. 2012 Jul 2;2(4):e000944 // doi: 10.1136/bmjopen-2012-000944.
237
Melnik B. C. Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases // J. Transl. Med. 2015. Dec. 21. Vol. 13. P. 385 // doi: 10.1186/s12967-015-0746-z; Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases // J Transl Med. 2019 Jan 3;17(1):3 // doi: 10.1186/s12967-018-1760-8; Melnik BC, John SM, Schmitz G. Adipogenic and insulin resistance-promoting effects of milk consumption // Mol Nutr Food Res. 2014 Jun;58(6):1166-7 // doi: 10.1002/mnfr.201470054.
238
Azushima K., Tamura K., Wakui H. et al. Bofu-tsu-shosan, an oriental herbal medicine, exerts a combinatorial favorable metabolic modulation including antihypertensive effect on a mouse model of human metabolic disorders with visceral obesity // PLoS One. 2013. Oct. 9. Vol. 8. No. 10. P. e75560 // doi: 10.1371/journal.pone.0075560.
239
Hibbard E. D., Smithells R. W. Folic acid metabolism and human embryopathy // Lancet. 1965. Vol. i. P. 1254 // academic.oup.com/ije/article/40/5/1154/660590; Smithells R. W., Shephard S., Schorah C. J. et al. Possible prevention of neural-tube defects by periconceptional vitamin supplementation // Lancet. 1980. Vol. i. Pp. 339–340.
240
Yafei W., Lijun P., Jinfeng W., Xiaoying Z. Is the prevalence of MTHFR C677T polymorphism associated with ultraviolet radiation in Eurasia? // J. Hum. Genet. 2012. Dec. Vol. 57. No. 12. Pp. 780–786 // doi: 10.1038/jhg.2012.113.
241
Abhinand P. A., Shaikh F., Bhakat S. et al. Insights on the structural perturbations in human MTHFR Ala222Val mutant by protein modeling and molecular dynamics // J. Biomol. Struct. Dyn. 2016. Vol. 34. No. 4. Pp. 892–905 // doi: 10.1080/07391102.2015.1057866.
242
Shea Larroque. MTHFR Genetics // medium.com/@sheamatthewfisher/mthfr-genetics-5747d04bb00c.
243
Zuin M., et al. Elevated Blood Homocysteine and Risk of Alzheimer’s Dementia: An Updated Systematic Review and Meta-Analysis Based on Prospective Studies // J. Prev. Alzheimers Dis. 2021. Vol. 8. No. 3. Pp. 329–334 // doi: 10.14283/jpad.2021.7.
244
Chaudhry S. H., et al. The role of maternal homocysteine concentration in placenta-mediated complications: findings from the Ottawa and Kingston birth cohort // BMC Pregnancy Childbirth. 2019. Feb. 19. Vol. 19. No. 1. P. 75 // doi: 10.1186/s12884-019-2219-5.
245
Mouhamed D. H., et al. Effect of cigarette smoking on plasma homocysteine concentrations // Clin. Chem. Lab. Med. 2011. Mar. Vol. 49. No. 3. Pp. 479–483 // doi: 10.1515/CCLM.2011.062; Verhoef P., et al. Contribution of caffeine to the homocysteine-raising effect of coffee: a randomized controlled trial in humans // The American Journal of Clinical Nutrition. 2002. Dec. Vol. 76. No. 6. Pp. 1244–1248 // doi: 10.1093/ajcn/76.6.1244.
246
Robinson J. L., et al. Betaine or folate can equally furnish remethylation to methionine and increase transmethylation in methionine-restricted neonates // J. Nutr. Biochem. 2018. Sep. Vol. 59. Pp. 129–135 // doi: 10.1016/j.jnutbio.2018.06.001; McBreairty L. E., et al. Betaine is as effective as folate at re-synthesizing methionine for protein synthesis during moderate methionine deficiency in piglets // Eur. J. Nutr. 2016. Dec. Vol. 55. No. 8. Pp. 2423–2430 // doi: 10.1007/s00394-015-1049-0.
247
Kosker A. R., Ozogul F., Ayas D. et al. Tetrodotoxin levels of three pufferfish species (Lagocephalus sp.) caught in the North-Eastern Mediterranean sea // Chemosphere. 2019. Mar. Vol. 219. Pp. 95–99 // doi: 10.1016/j.chemosphere.2018.12.010.
248
NCD roadmap report // ncdalliance.org/sites/default/files/resource_files/NCD%20Roadmap%20Report.pdf.
249
De Toro-Martin J., et. al.. Precision Nutrition: A Review of Personalized Nutritional Approaches for the Prevention and Management of Metabolic Syndrome // Nutrients. 2017. Vol. 9. No. 8. P. 913 // doi: 10.3390/nu9080913; Schroeder S. A. We Can Do Better — Improving the Health of the American People // N. Engl. J. Med. 2007. Vol. 357. Pp. 1221–1228 // doi: 10.1056/NEJMsa073350.
250
За здоровье! Как меняется потребление алкоголя в России // http://ria.ru/20190911/1558534727.html.
251
Darrel A. Regier, et.al. DSM-5: Классификация и изменения критериев // psychiatr.ru/files/magazines/2013_06_wpa_648.pdf.
252
Reynolds CA, et.al. Comparative rating measures of health and environmental exposures: how well do twins agree? Twin Res Hum Genet. 2005 Apr;8(2):113-9 // doi: 10.1375/1832427053738791. pubmed.ncbi.nlm.nih.gov/15901474/; Froehlich JC, et.al. Analysis of heritability of hormonal responses to alcohol in twins: beta-endorphin as a potential biomarker of genetic risk for alcoholism. Alcohol Clin Exp Res. 2000 Mar;24(3):265-77 // pubmed.ncbi.nlm.nih.gov/10776662.
253
Edenberg H. J., Foroud T. Genetics and alcoholism // Nat. Rev. Gastroenterol. Hepatol. 2013. Aug. Vol. 10. No. 8. Pp. 487–494 // doi: 10.1038/nrgastro.2013.86; Higuchi S. Polymorphisms of ethanol metabolizing enzyme genes and alcoholism // Alcohol. Alcohol. Suppl. 1994. Vol. 2. Pp. 29–34.
254
SUSUMU HIGUCHI. Japan: alcohol today // Addiction, Volume102, Issue12, November 30, 2007, Pages 1849–1862 // https://doi.org/10.1111/j.1360–0443.2007.01902.x.
255
NEEL JV. Diabetes mellitus: a "thrifty" genotype rendered detrimental by "progress"? // Am J Hum Genet. 1962 Dec;14(4):353-62 // pubmed.ncbi.nlm.nih.gov/13937884.
256
Mathias Rask-Andersen, et.al. Gene-environment interaction study for BMI reveals interactions between genetic factors and physical activity, alcohol consumption and socioeconomic status // PLOS Genetics // doi.org/10.1371/journal.pgen.1006977
257
Diamond J. M. Diabetes Running Wild // Nature. 1992. Vol. 357. Pp. 362–363.
258
Cagliani R, et al. Diverse evolutionary histories for beta-adrenoreceptor genes in humans. Am J Hum Genet. 2009 Jul; 85(1): 64–75 // doi: 10.1016/j.ajhg.2009.06.005.
259
Endres W. Inherited metabolic diseases affecting the carrier // Journal of Inherited Metabolic Disease. 1997. Vol. 20. Pp. 9–20.
260
Krawczak M., Zshocke J. A role for overdominant selection in phenylketonuria? Evidence from molecular data // Hum. Mutat. 2003. Apr. Vol. 21. No. 4. Pp. 394–397 // doi: 10.1002/humu.10205.
261
Prashant Singh. Global Prevalence of Celiac Disease: Systematic Review and Meta-analysis // Systematic reviews and meta-analyses, Volume 16, ISSUE 6, P823-836.e2, June 01, 2018 // doi.org/10.1016/j.cgh.2017.06.037cghjournal.org/article/S1542-3565(17)30783-8/fulltext.